Suppr超能文献

分割时钟微阵列时间序列中模式检测方法的比较

Comparison of pattern detection methods in microarray time series of the segmentation clock.

作者信息

Dequéant Mary-Lee, Ahnert Sebastian, Edelsbrunner Herbert, Fink Thomas M A, Glynn Earl F, Hattem Gaye, Kudlicki Andrzej, Mileyko Yuriy, Morton Jason, Mushegian Arcady R, Pachter Lior, Rowicka Maga, Shiu Anne, Sturmfels Bernd, Pourquié Olivier

机构信息

Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.

出版信息

PLoS One. 2008 Aug 6;3(8):e2856. doi: 10.1371/journal.pone.0002856.

Abstract

While genome-wide gene expression data are generated at an increasing rate, the repertoire of approaches for pattern discovery in these data is still limited. Identifying subtle patterns of interest in large amounts of data (tens of thousands of profiles) associated with a certain level of noise remains a challenge. A microarray time series was recently generated to study the transcriptional program of the mouse segmentation clock, a biological oscillator associated with the periodic formation of the segments of the body axis. A method related to Fourier analysis, the Lomb-Scargle periodogram, was used to detect periodic profiles in the dataset, leading to the identification of a novel set of cyclic genes associated with the segmentation clock. Here, we applied to the same microarray time series dataset four distinct mathematical methods to identify significant patterns in gene expression profiles. These methods are called: Phase consistency, Address reduction, Cyclohedron test and Stable persistence, and are based on different conceptual frameworks that are either hypothesis- or data-driven. Some of the methods, unlike Fourier transforms, are not dependent on the assumption of periodicity of the pattern of interest. Remarkably, these methods identified blindly the expression profiles of known cyclic genes as the most significant patterns in the dataset. Many candidate genes predicted by more than one approach appeared to be true positive cyclic genes and will be of particular interest for future research. In addition, these methods predicted novel candidate cyclic genes that were consistent with previous biological knowledge and experimental validation in mouse embryos. Our results demonstrate the utility of these novel pattern detection strategies, notably for detection of periodic profiles, and suggest that combining several distinct mathematical approaches to analyze microarray datasets is a valuable strategy for identifying genes that exhibit novel, interesting transcriptional patterns.

摘要

尽管全基因组基因表达数据的生成速度在不断加快,但在这些数据中进行模式发现的方法种类仍然有限。在大量数据(数万条图谱)中识别与一定程度噪声相关的感兴趣的细微模式仍然是一项挑战。最近生成了一个微阵列时间序列,用于研究小鼠体节时钟的转录程序,体节时钟是一种与体轴节段的周期性形成相关的生物振荡器。一种与傅里叶分析相关的方法—— Lomb-Scargle周期图,被用于检测数据集中的周期性图谱,从而识别出一组与体节时钟相关的新的循环基因。在这里,我们将四种不同的数学方法应用于同一微阵列时间序列数据集,以识别基因表达图谱中的显著模式。这些方法分别是:相位一致性、地址约简、环面体测试和稳定持久性,它们基于不同的概念框架,这些框架要么是假设驱动的,要么是数据驱动的。与傅里叶变换不同,其中一些方法不依赖于感兴趣模式的周期性假设。值得注意的是,这些方法盲目地将已知循环基因的表达图谱识别为数据集中最显著的模式。通过多种方法预测的许多候选基因似乎是真正的阳性循环基因,将是未来研究特别感兴趣的对象。此外,这些方法还预测了与小鼠胚胎先前的生物学知识和实验验证一致的新候选循环基因。我们的结果证明了这些新型模式检测策略的实用性,特别是对于周期性图谱的检测,并表明结合几种不同的数学方法来分析微阵列数据集是识别呈现新颖、有趣转录模式的基因的一种有价值的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fe1/2481401/caf096ad1bf6/pone.0002856.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验