Jaganathan S, Vahedi Tafreshi H, Pourdeyhimi B
Nonwovens Cooperative Research Center, NC State University, Raleigh, NC 27695-8301, USA.
J Colloid Interface Sci. 2008 Oct 1;326(1):166-75. doi: 10.1016/j.jcis.2008.07.011. Epub 2008 Jul 15.
In this paper, an analysis to distinguish the geometric and porosimetric pore size distributions of a fibrous material is presented. The work is based on simulating the intrusion of nonwetting fluid in a series of 3-D fibrous microstructures obtained from 3-D image reconstruction or virtual geometries mathematically generated according to the properties of the media. We start our study by computing the pore size distribution of two typical hydroentangled nonwoven materials and present a theoretical model for their geometric pore size distributions based on Poisson line network model of the fibrous media. It is shown that the probability density function of the geometric pore size distribution can be approximated by a two-parametric Gamma distribution. We also study connectivity of the pore space in fibrous media by computing and comparing the accessible and allowed pore volumes in the form access function graphs. It is shown that the so-called ink-bottle effect can significantly influence the fluid intrusion in a porous material. The pore space connectivity of a homogeneous fibrous media is observed to be a function of thickness, solid volume fraction (SVF), and fiber diameter. It is shown that increasing the materials' thickness or SVF, while other properties are kept constant, reduces the pore space connectivity. On the other hand, increasing the fiber diameter enhances the connectivity of the pores if all other parameters are fixed. Moreover, modeling layered fibrous microstructures; it is shown that the access function graphs can be used to detect the location of the bottle neck pores in a layered/composite porous material.
本文提出了一种区分纤维材料几何孔径分布和孔隙率孔径分布的分析方法。这项工作基于对非润湿流体侵入一系列三维纤维微观结构的模拟,这些微观结构是通过三维图像重建获得的,或者是根据介质特性通过数学方法生成的虚拟几何结构。我们通过计算两种典型的水刺非织造材料的孔径分布开始研究,并基于纤维介质的泊松线网络模型提出了它们几何孔径分布的理论模型。结果表明,几何孔径分布的概率密度函数可以用双参数伽马分布近似。我们还通过计算和比较以通达函数图形式表示的可及孔隙体积和允许孔隙体积,研究了纤维介质中孔隙空间的连通性。结果表明,所谓的墨水瓶效应会显著影响多孔材料中的流体侵入。观察到均匀纤维介质的孔隙空间连通性是厚度、固体体积分数(SVF)和纤维直径的函数。结果表明,在其他性质保持不变的情况下,增加材料的厚度或SVF会降低孔隙空间连通性。另一方面,如果所有其他参数固定,增加纤维直径会增强孔隙的连通性。此外,通过对层状纤维微观结构进行建模,结果表明通达函数图可用于检测层状/复合多孔材料中瓶颈孔隙的位置。