Schunck Christian H, Shin Yong-Il, Schirotzek André, Ketterle Wolfgang
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139, USA.
Nature. 2008 Aug 7;454(7205):739-43. doi: 10.1038/nature07176.
Fermionic superfluidity requires the formation of particle pairs, the size of which varies from the femtometre scale in neutron stars and nuclei to the micrometre scale in conventional superconductors. Many properties of the superfluid depend on the pair size relative to the interparticle spacing. This is expressed in 'BCS-BEC crossover' theories, describing the crossover from a Bardeen-Cooper-Schrieffer (BCS)-type superfluid of loosely bound, large Cooper pairs to Bose-Einstein condensates (BECs) of tightly bound molecules. Such a crossover superfluid has been realized in ultracold atomic gases where high-temperature superfluidity has been observed. The microscopic properties of the fermion pairs can be probed using radio-frequency spectroscopy. However, previous work was difficult to interpret owing to strong final-state interactions that were not well understood. Here we realize a superfluid spin mixture in which such interactions have negligible influence and present fermion pair dissociation spectra that reveal the underlying pairing correlations. This allows us to determine that the spectroscopic pair size in the resonantly interacting gas is 20 per cent smaller than the interparticle spacing. These are the smallest pairs so far observed in fermionic superfluids, highlighting the importance of small fermion pairs for superfluidity at high critical temperatures. We have also identified transitions from fermion pairs to bound molecular states and to many-body bound states in the case of strong final-state interactions.
费米子超流性需要形成粒子对,其大小从中子星和原子核中的飞米尺度到传统超导体中的微米尺度不等。超流体的许多性质取决于粒子对大小与粒子间间距的相对关系。这在“BCS - BEC 交叉”理论中有所体现,该理论描述了从由松散结合的大库珀对构成的巴丁 - 库珀 - 施里弗(BCS)型超流体到紧密结合分子的玻色 - 爱因斯坦凝聚体(BEC)的转变。这种交叉超流体已在超冷原子气体中实现,在其中观察到了高温超流性。可以使用射频光谱法探测费米子对的微观性质。然而,由于之前未被充分理解的强末态相互作用,先前的工作难以解释。在此,我们实现了一种超流体自旋混合物,其中这种相互作用的影响可忽略不计,并展示了揭示潜在配对相关性的费米子对解离光谱。这使我们能够确定,在共振相互作用气体中,光谱学上的粒子对大小比粒子间间距小 20%。这些是迄今为止在费米子超流体中观察到的最小粒子对,凸显了小费米子对对于高温临界温度下超流性的重要性。我们还在强末态相互作用的情况下,确定了从费米子对到束缚分子态以及到多体束缚态的转变。