Aubert Julien, Amit Hagay, Hulot Gauthier, Olson Peter
Dynamique des Fluides Géologiques, Université Paris-Diderot, INSU/CNRS, 4, Place Jussieu, 75252, Paris cedex 05, France.
Nature. 2008 Aug 7;454(7205):758-61. doi: 10.1038/nature07109.
Seismic waves sampling the top 100 km of the Earth's inner core reveal that the eastern hemisphere (40 degrees E-180 degrees E) is seismically faster, more isotropic and more attenuating than the western hemisphere. The origin of this hemispherical dichotomy is a challenging problem for our understanding of the Earth as a system of dynamically coupled layers. Previously, laboratory experiments have established that thermal control from the lower mantle can drastically affect fluid flow in the outer core, which in turn can induce textural heterogeneity on the inner core solidification front. The resulting texture should be consistent with other expected manifestations of thermal mantle control on the geodynamo, specifically magnetic flux concentrations in the time-average palaeomagnetic field over the past 5 Myr, and preferred eddy locations in flows imaged below the core-mantle boundary by the analysis of historical geomagnetic secular variation. Here we show that a single model of thermochemical convection and dynamo action can account for all these effects by producing a large-scale, long-term outer core flow that couples the heterogeneity of the inner core with that of the lower mantle. The main feature of this thermochemical 'wind' is a cyclonic circulation below Asia, which concentrates magnetic field on the core-mantle boundary at the observed location and locally agrees with core flow images. This wind also causes anomalously high rates of light element release in the eastern hemisphere of the inner core boundary, suggesting that lateral seismic anomalies at the top of the inner core result from mantle-induced variations in its freezing rate.
对地球内核顶部100公里进行地震波采样发现,东半球(东经40度至180度)在地震学上比西半球速度更快、各向异性更强且衰减更大。这种半球二分法的起源对于我们将地球理解为一个动态耦合层系统来说是一个具有挑战性的问题。此前,实验室实验已经证实,下地幔的热控制会极大地影响外核中的流体流动,进而可能在内核凝固前沿诱导织构不均匀性。由此产生的织构应与热地幔对地球发电机的其他预期表现一致,特别是过去500万年时间平均古地磁场中的磁通量集中,以及通过对历史地磁长期变化的分析在核幔边界下方成像的流动中首选的涡旋位置。在这里,我们表明,一个热化学对流和发电机作用的单一模型可以通过产生一种大规模、长期的外核流动来解释所有这些效应,这种流动将内核的不均匀性与下地幔的不均匀性联系起来。这种热化学“风”的主要特征是亚洲下方的气旋环流,它将磁场集中在观测位置的核幔边界上,并且局部上与核流图像相符。这种风还导致内核边界东半球的轻元素释放率异常高,这表明内核顶部的横向地震异常是由地幔引起的其凝固速率变化导致的。