Department Earth and Environmental Sciences, University of Rochester, Rochester, NY, 14627, USA.
Department Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA.
Nat Commun. 2022 Jul 19;13(1):4161. doi: 10.1038/s41467-022-31677-7.
Paleomagnetism can elucidate the origin of inner core structure by establishing when crystallization started. The salient signal is an ultralow field strength, associated with waning thermal energy to power the geodynamo from core-mantle heat flux, followed by a sharp intensity increase as new thermal and compositional sources of buoyancy become available once inner core nucleation (ICN) commences. Ultralow fields have been reported from Ediacaran (565 Ma) rocks, but the transition to stronger strengths has been unclear. Herein, we present single crystal paleointensity results from early Cambrian (532 Ma) anorthosites of Oklahoma. These yield a time-averaged dipole moment 5 times greater than that of the Ediacaran Period. This rapid renewal of the field, together with data defining ultralow strengths, constrains ICN to ~550 Ma. Thermal modeling using this onset age suggests the inner core had grown to 50% of its current radius, where seismic anisotropy changes, by ~450 Ma. We propose the seismic anisotropy of the outermost inner core reflects development of a global spherical harmonic degree-2 deep mantle structure at this time that has persisted to the present day. The imprint of an older degree-1 pattern is preserved in the innermost inner core.
古地磁学可以通过确定结晶开始的时间来阐明内核结构的起源。显著的信号是超弱磁场强度,与核心-地幔热通量驱动地磁场的热能减弱有关,随后随着新的热和成分浮力源的出现,一旦内核成核(ICN)开始,强度会急剧增加。从埃迪卡拉纪(约 5.65 亿年前)岩石中已经报道了超弱磁场,但向更强强度的转变尚不清楚。在此,我们展示了来自俄克拉荷马州早寒武纪(约 5.32 亿年前)的斜长岩的单晶古强度结果。这些结果得到的偶极矩平均值是埃迪卡拉纪时期的 5 倍。磁场的这种快速更新,加上定义超弱强度的数据,将 ICN 约束在约 550 Ma。使用这个起始年龄的热模拟表明,到~450 Ma,内核已经生长到其当前半径的 50%,此时地震各向异性发生变化。我们提出,此时最外层内核的地震各向异性反映了全球球谐度 2 的深部地幔结构的发展,这种结构一直持续到今天。最内层内核中保留了更老的度 1 模式的印记。