Suppr超能文献

日本慢生根瘤菌在化学自养生长过程中的全基因组转录谱分析。

Whole-genome transcriptional profiling of Bradyrhizobium japonicum during chemoautotrophic growth.

作者信息

Franck William L, Chang Woo-Suk, Qiu Jing, Sugawara Masayuki, Sadowsky Michael J, Smith Stephanie A, Stacey Gary

机构信息

National Center for Soybean Biotechnology, Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

J Bacteriol. 2008 Oct;190(20):6697-705. doi: 10.1128/JB.00543-08. Epub 2008 Aug 8.

Abstract

Bradyrhizobium japonicum is a facultative chemoautotroph capable of utilizing hydrogen gas as an electron donor in a respiratory chain terminated by oxygen to provide energy for cellular processes and carbon dioxide assimilation via a reductive pentose phosphate pathway. A transcriptomic analysis of B. japonicum cultured chemoautotrophically identified 1,485 transcripts, representing 17.5% of the genome, as differentially expressed when compared to heterotrophic cultures. Genetic determinants required for hydrogen utilization and carbon fixation, including the uptake hydrogenase system and components of the Calvin-Benson-Bassham cycle, were strongly induced in chemoautotrophically cultured cells. A putative isocitrate lyase (aceA; blr2455) was among the most strongly upregulated genes, suggesting a role for the glyoxylate cycle during chemoautotrophic growth. Addition of arabinose to chemoautotrophic cultures of B. japonicum did not significantly alter transcript profiles. Furthermore, a subset of nitrogen fixation genes was moderately induced during chemoautotrophic growth. In order to specifically address the role of isocitrate lyase and nitrogenase in chemoautotrophic growth, we cultured aceA, nifD, and nifH mutants under chemoautotrophic conditions. Growth of each mutant was similar to that of the wild type, indicating that the glyoxylate bypass and nitrogenase activity are not essential components of chemoautotrophy in B. japonicum.

摘要

日本慢生根瘤菌是一种兼性化学自养菌,能够在以氧气为终端的呼吸链中利用氢气作为电子供体,为细胞过程提供能量,并通过还原性戊糖磷酸途径进行二氧化碳同化。对化学自养培养的日本慢生根瘤菌进行的转录组分析确定,与异养培养相比,有1485个转录本(占基因组的17.5%)差异表达。在化学自养培养的细胞中,氢气利用和碳固定所需的遗传决定因素,包括摄取氢化酶系统和卡尔文-本森-巴斯姆循环的成分,被强烈诱导。一个假定的异柠檬酸裂合酶(aceA;blr2455)是上调最强烈的基因之一,表明乙醛酸循环在化学自养生长过程中发挥作用。向日本慢生根瘤菌的化学自养培养物中添加阿拉伯糖并没有显著改变转录本图谱。此外,一部分固氮基因在化学自养生长过程中受到适度诱导。为了具体研究异柠檬酸裂合酶和固氮酶在化学自养生长中的作用,我们在化学自养条件下培养了aceA、nifD和nifH突变体。每个突变体的生长与野生型相似,这表明乙醛酸旁路和固氮酶活性不是日本慢生根瘤菌化学自养的必需成分。

相似文献

1
Whole-genome transcriptional profiling of Bradyrhizobium japonicum during chemoautotrophic growth.
J Bacteriol. 2008 Oct;190(20):6697-705. doi: 10.1128/JB.00543-08. Epub 2008 Aug 8.
4
Whole-genome expression profiling of Bradyrhizobium japonicum in response to hydrogen peroxide.
Mol Plant Microbe Interact. 2011 Dec;24(12):1472-81. doi: 10.1094/MPMI-03-11-0072.
5
Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress.
J Bacteriol. 2007 Oct;189(19):6751-62. doi: 10.1128/JB.00533-07. Epub 2007 Jul 27.
6
Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum.
Appl Environ Microbiol. 2010 Apr;76(8):2402-9. doi: 10.1128/AEM.02783-09. Epub 2010 Feb 19.
7
Expression of uptake hydrogenase and hydrogen oxidation during heterotrophic growth of Bradyrhizobium japonicum.
J Bacteriol. 1987 Oct;169(10):4565-9. doi: 10.1128/jb.169.10.4565-4569.1987.
9
Host-specific symbiotic requirement of BdeAB, a RegR-controlled RND-type efflux system in Bradyrhizobium japonicum.
FEMS Microbiol Lett. 2010 Nov;312(2):184-91. doi: 10.1111/j.1574-6968.2010.02115.x. Epub 2010 Sep 30.

引用本文的文献

4
Identification of the Important Genes of 113-2 Involved in Soybean Nodule Development and Senescence.
Front Microbiol. 2021 Nov 11;12:754837. doi: 10.3389/fmicb.2021.754837. eCollection 2021.
5
Cyclical Patterns Affect Microbial Dynamics in the Water Basin of a Nuclear Research Reactor.
Front Microbiol. 2021 Oct 15;12:744115. doi: 10.3389/fmicb.2021.744115. eCollection 2021.
7
Diurnal Changes in Active Carbon and Nitrogen Pathways Along the Temperature Gradient in Porcelana Hot Spring Microbial Mat.
Front Microbiol. 2018 Oct 2;9:2353. doi: 10.3389/fmicb.2018.02353. eCollection 2018.

本文引用的文献

1
Insertion and deletion mutations within the nif region of Rhizobium japonicum.
Plant Mol Biol. 1984 May;3(3):159-68. doi: 10.1007/BF00016063.
2
An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum.
Mol Plant Microbe Interact. 2007 Oct;20(10):1298-307. doi: 10.1094/MPMI-20-10-1298.
3
Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress.
J Bacteriol. 2007 Oct;189(19):6751-62. doi: 10.1128/JB.00533-07. Epub 2007 Jul 27.
5
Identification of the aceA gene encoding isocitrate lyase required for the growth of Pseudomonas aeruginosa on acetate, acyclic terpenes and leucine.
FEMS Microbiol Lett. 2007 Apr;269(2):309-16. doi: 10.1111/j.1574-6968.2007.00654.x. Epub 2007 Feb 22.
6
Transformations for cDNA microarray data.
Stat Appl Genet Mol Biol. 2003;2:Article4. doi: 10.2202/1544-6115.1009. Epub 2003 Jun 18.
7
Bradyrhizobium japonicum senses iron through the status of haem to regulate iron homeostasis and metabolism.
Mol Microbiol. 2006 Apr;60(2):427-37. doi: 10.1111/j.1365-2958.2006.05101.x.
9
Transposon Tn5-Generated Bradyrhizobium japonicum Mutants Unable To Grow Chemoautotrophically with H(2).
Appl Environ Microbiol. 1988 Feb;54(2):358-63. doi: 10.1128/aem.54.2.358-363.1988.
10
Anaerobic Growth and Denitrification among Different Serogroups of Soybean Rhizobia.
Appl Environ Microbiol. 1985 Apr;49(4):772-7. doi: 10.1128/aem.49.4.772-777.1985.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验