Suppr超能文献

硫代硫酸盐依赖型化能自养生长的大豆根瘤菌。

Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum.

机构信息

Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

出版信息

Appl Environ Microbiol. 2010 Apr;76(8):2402-9. doi: 10.1128/AEM.02783-09. Epub 2010 Feb 19.

Abstract

Thiosulfate-oxidizing sox gene homologues were found at four loci (I, II, III, and IV) on the genome of Bradyrhizobium japonicum USDA110, a symbiotic nitrogen-fixing bacterium in soil. In fact, B. japonicum USDA110 can oxidize thiosulfate and grow under a chemolithotrophic condition. The deletion mutation of the soxY(1) gene at the sox locus I, homologous to the sulfur-oxidizing (Sox) system in Alphaproteobacteria, left B. japonicum unable to oxidize thiosulfate and grow under chemolithotrophic conditions, whereas the deletion mutation of the soxY(2) gene at sox locus II, homologous to the Sox system in green sulfur bacteria, produced phenotypes similar to those of wild-type USDA110. Thiosulfate-dependent O(2) respiration was observed only in USDA110 and the soxY(2) mutant and not in the soxY(1) mutant. In the cells, 1 mol of thiosulfate was stoichiometrically converted to approximately 2 mol of sulfate and consumed approximately 2 mol of O(2). B. japonicum USDA110 showed (14)CO(2) fixation under chemolithotrophic growth conditions. The CO(2) fixation of resting cells was significantly dependent on thiosulfate addition. These results show that USDA110 is able to grow chemolithoautotrophically using thiosulfate as an electron donor, oxygen as an electron acceptor, and carbon dioxide as a carbon source, which likely depends on sox locus I including the soxY(1) gene on USDA110 genome. Thiosulfate oxidation capability is frequently found in members of the Bradyrhizobiaceae, which phylogenetic analysis showed to be associated with the presence of sox locus I homologues, including the soxY(1) gene of B. japonicum USDA110.

摘要

在土壤共生固氮菌根瘤菌属(Bradyrhizobium japonicum)USDA110 的基因组中,发现了四个硫代硫酸盐氧化 sox 基因同源物(I、II、III 和 IV)。事实上,B. japonicum USDA110 可以氧化硫代硫酸盐并在化能自养条件下生长。sox 基因座 I 处的 soxY(1)基因缺失突变,与 α-变形菌中的硫氧化(Sox)系统同源,导致 B. japonicum 无法氧化硫代硫酸盐并在化能自养条件下生长,而 sox 基因座 II 处的 soxY(2)基因缺失突变,与绿硫细菌中的 Sox 系统同源,产生的表型与野生型 USDA110 相似。只有 USDA110 和 soxY(2)突变体观察到依赖硫代硫酸盐的 O(2)呼吸,而 soxY(1)突变体则没有。在细胞中,1 摩尔的硫代硫酸盐被化学计量地转化为约 2 摩尔的硫酸盐并消耗约 2 摩尔的 O(2)。B. japonicum USDA110 在化能自养生长条件下显示(14)CO(2)固定。静止细胞的 CO(2)固定明显依赖于硫代硫酸盐的添加。这些结果表明,USDA110 能够使用硫代硫酸盐作为电子供体、氧气作为电子受体和二氧化碳作为碳源进行化能自养生长,这可能依赖于包括 USDA110 基因组上 soxY(1)基因在内的 sox 基因座 I。硫代硫酸盐氧化能力在根瘤菌科的成员中经常发现,系统发育分析表明,这种能力与 sox 基因座 I 同源物的存在有关,包括 B. japonicum USDA110 的 soxY(1)基因。

相似文献

1
Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum.
Appl Environ Microbiol. 2010 Apr;76(8):2402-9. doi: 10.1128/AEM.02783-09. Epub 2010 Feb 19.
3
Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST.
Microbiol Res. 2020 Jan;230:126345. doi: 10.1016/j.micres.2019.126345. Epub 2019 Sep 23.
4
Aerobic vanillate degradation and C1 compound metabolism in Bradyrhizobium japonicum.
Appl Environ Microbiol. 2009 Aug;75(15):5012-7. doi: 10.1128/AEM.00755-09. Epub 2009 Jun 5.
5
Molecular mechanism of sulfur chemolithotrophy in the betaproteobacterium SBSA.
Microbiology (Reading). 2020 Apr;166(4):386-397. doi: 10.1099/mic.0.000890. Epub 2020 Jan 30.
6
An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by (syn. Bradyrhizobium japonicum) USDA110.
Appl Environ Microbiol. 2019 Nov 27;85(24). doi: 10.1128/AEM.01552-19. Print 2019 Dec 15.
7

引用本文的文献

1
Bacterial Community Structure of Two Cold Sulfur Springs in Slovakia (Central Europe).
Curr Microbiol. 2023 Mar 22;80(5):145. doi: 10.1007/s00284-023-03251-x.
2
The Early Microbial Colonizers of a Short-Lived Volcanic Island in the Kingdom of Tonga.
mBio. 2023 Feb 28;14(1):e0331322. doi: 10.1128/mbio.03313-22. Epub 2023 Jan 11.
3
Multiple Genes of Symbiotic Plasmid and Chromosome in Type II Peanut Strains Corresponding to the Incompatible Symbiosis With .
Front Microbiol. 2020 Jun 23;11:1175. doi: 10.3389/fmicb.2020.01175. eCollection 2020.
4
Phylogeny and Phylogeography of Rhizobial Symbionts Nodulating Legumes of the Tribe Genisteae.
Genes (Basel). 2018 Mar 14;9(3):163. doi: 10.3390/genes9030163.
6
Requirements for Efficient Thiosulfate Oxidation in Bradyrhizobium diazoefficiens.
Genes (Basel). 2017 Dec 15;8(12):390. doi: 10.3390/genes8120390.
8
Sulfur Fertilization Changes the Community Structure of Rice Root-, and Soil- Associated Bacteria.
Microbes Environ. 2016;31(1):70-5. doi: 10.1264/jsme2.ME15170. Epub 2016 Mar 5.

本文引用的文献

4
Aerobic vanillate degradation and C1 compound metabolism in Bradyrhizobium japonicum.
Appl Environ Microbiol. 2009 Aug;75(15):5012-7. doi: 10.1128/AEM.00755-09. Epub 2009 Jun 5.
6
Whole-genome transcriptional profiling of Bradyrhizobium japonicum during chemoautotrophic growth.
J Bacteriol. 2008 Oct;190(20):6697-705. doi: 10.1128/JB.00543-08. Epub 2008 Aug 8.
7
Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance.
FEMS Microbiol Ecol. 2008 Jul;65(1):1-14. doi: 10.1111/j.1574-6941.2008.00502.x. Epub 2008 May 21.
8
A thiosulfate shunt in the sulfur cycle of marine sediments.
Science. 1990 Jul 13;249(4965):152-4. doi: 10.1126/science.249.4965.152.
9
Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia.
Science. 2007 Jun 1;316(5829):1307-12. doi: 10.1126/science.1139548.
10
The SoxYZ complex carries sulfur cycle intermediates on a peptide swinging arm.
J Biol Chem. 2007 Aug 10;282(32):23194-204. doi: 10.1074/jbc.M701602200. Epub 2007 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验