Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
Appl Environ Microbiol. 2010 Apr;76(8):2402-9. doi: 10.1128/AEM.02783-09. Epub 2010 Feb 19.
Thiosulfate-oxidizing sox gene homologues were found at four loci (I, II, III, and IV) on the genome of Bradyrhizobium japonicum USDA110, a symbiotic nitrogen-fixing bacterium in soil. In fact, B. japonicum USDA110 can oxidize thiosulfate and grow under a chemolithotrophic condition. The deletion mutation of the soxY(1) gene at the sox locus I, homologous to the sulfur-oxidizing (Sox) system in Alphaproteobacteria, left B. japonicum unable to oxidize thiosulfate and grow under chemolithotrophic conditions, whereas the deletion mutation of the soxY(2) gene at sox locus II, homologous to the Sox system in green sulfur bacteria, produced phenotypes similar to those of wild-type USDA110. Thiosulfate-dependent O(2) respiration was observed only in USDA110 and the soxY(2) mutant and not in the soxY(1) mutant. In the cells, 1 mol of thiosulfate was stoichiometrically converted to approximately 2 mol of sulfate and consumed approximately 2 mol of O(2). B. japonicum USDA110 showed (14)CO(2) fixation under chemolithotrophic growth conditions. The CO(2) fixation of resting cells was significantly dependent on thiosulfate addition. These results show that USDA110 is able to grow chemolithoautotrophically using thiosulfate as an electron donor, oxygen as an electron acceptor, and carbon dioxide as a carbon source, which likely depends on sox locus I including the soxY(1) gene on USDA110 genome. Thiosulfate oxidation capability is frequently found in members of the Bradyrhizobiaceae, which phylogenetic analysis showed to be associated with the presence of sox locus I homologues, including the soxY(1) gene of B. japonicum USDA110.
在土壤共生固氮菌根瘤菌属(Bradyrhizobium japonicum)USDA110 的基因组中,发现了四个硫代硫酸盐氧化 sox 基因同源物(I、II、III 和 IV)。事实上,B. japonicum USDA110 可以氧化硫代硫酸盐并在化能自养条件下生长。sox 基因座 I 处的 soxY(1)基因缺失突变,与 α-变形菌中的硫氧化(Sox)系统同源,导致 B. japonicum 无法氧化硫代硫酸盐并在化能自养条件下生长,而 sox 基因座 II 处的 soxY(2)基因缺失突变,与绿硫细菌中的 Sox 系统同源,产生的表型与野生型 USDA110 相似。只有 USDA110 和 soxY(2)突变体观察到依赖硫代硫酸盐的 O(2)呼吸,而 soxY(1)突变体则没有。在细胞中,1 摩尔的硫代硫酸盐被化学计量地转化为约 2 摩尔的硫酸盐并消耗约 2 摩尔的 O(2)。B. japonicum USDA110 在化能自养生长条件下显示(14)CO(2)固定。静止细胞的 CO(2)固定明显依赖于硫代硫酸盐的添加。这些结果表明,USDA110 能够使用硫代硫酸盐作为电子供体、氧气作为电子受体和二氧化碳作为碳源进行化能自养生长,这可能依赖于包括 USDA110 基因组上 soxY(1)基因在内的 sox 基因座 I。硫代硫酸盐氧化能力在根瘤菌科的成员中经常发现,系统发育分析表明,这种能力与 sox 基因座 I 同源物的存在有关,包括 B. japonicum USDA110 的 soxY(1)基因。