Suppr超能文献

高阶马尔可夫基序的高效表示与P值计算

Efficient representation and P-value computation for high-order Markov motifs.

作者信息

da Fonseca Paulo G S, Guimarães Katia S, Sagot Marie-France

机构信息

Centro de Informática, Universidade Federal de Pernambuco, 50732-970 Recife, Brazil.

出版信息

Bioinformatics. 2008 Aug 15;24(16):i160-6. doi: 10.1093/bioinformatics/btn282.

Abstract

MOTIVATION

Position weight matrices (PWMs) have become a standard for representing biological sequence motifs. Their relative simplicity has favoured the development of efficient algorithms for diverse tasks such as motif identification, sequence scanning and statistical significance evaluation. Markov chainbased models generalize the PWM model by allowing for interposition dependencies to be considered, at the cost of substantial computational overhead, which may limit their application.

RESULTS

In this article, we consider two aspects regarding the use of higher order Markov models for biological sequence motifs, namely, the representation and the computation of P-values for motifs described by a set of occurrences. We propose an efficient representation based on the use of tries, from which empirical position-specific conditional base probabilities can be computed, and extend state-of-the-art PWM-based algorithms to allow for the computation of exact P-values for high-order Markov motif models.

AVAILABILITY

The software is available in the form of a Java objectoriented library from http://www.cin.ufpe.br/approxiamtely paguso/kmarkov.

摘要

动机

位置权重矩阵(PWMs)已成为表示生物序列基序的标准。其相对简单性有利于开发用于各种任务的高效算法,如基序识别、序列扫描和统计显著性评估。基于马尔可夫链的模型通过允许考虑插入依赖性来推广PWM模型,但代价是大量的计算开销,这可能会限制它们的应用。

结果

在本文中,我们考虑了关于使用高阶马尔可夫模型处理生物序列基序的两个方面,即由一组出现情况描述的基序的表示和P值的计算。我们提出了一种基于使用tries树的有效表示方法,从中可以计算经验位置特定条件碱基概率,并扩展了基于PWM的现有算法,以允许计算高阶马尔可夫基序模型的精确P值。

可用性

该软件以Java面向对象库的形式提供,可从http://www.cin.ufpe.br/approxiamtely paguso/kmarkov获取。

相似文献

1
Efficient representation and P-value computation for high-order Markov motifs.
Bioinformatics. 2008 Aug 15;24(16):i160-6. doi: 10.1093/bioinformatics/btn282.
2
A profile-based deterministic sequential Monte Carlo algorithm for motif discovery.
Bioinformatics. 2008 Jan 1;24(1):46-55. doi: 10.1093/bioinformatics/btm543. Epub 2007 Nov 17.
3
Algorithms for variable length Markov chain modeling.
Bioinformatics. 2004 Mar 22;20(5):788-9. doi: 10.1093/bioinformatics/btg489. Epub 2004 Jan 29.
4
Calibrating E-values for hidden Markov models using reverse-sequence null models.
Bioinformatics. 2005 Nov 15;21(22):4107-15. doi: 10.1093/bioinformatics/bti629. Epub 2005 Aug 25.
5
Faster exact Markovian probability functions for motif occurrences: a DFA-only approach.
Bioinformatics. 2008 Dec 15;24(24):2839-48. doi: 10.1093/bioinformatics/btn525. Epub 2008 Oct 9.
6
Branch and bound computation of exact p-values.
Bioinformatics. 2006 Sep 1;22(17):2158-9. doi: 10.1093/bioinformatics/btl357. Epub 2006 Aug 7.
7
What is a hidden Markov model?
Nat Biotechnol. 2004 Oct;22(10):1315-6. doi: 10.1038/nbt1004-1315.
9
Computation of mutual information from Hidden Markov Models.
Comput Biol Chem. 2010 Dec;34(5-6):328-33. doi: 10.1016/j.compbiolchem.2010.08.005. Epub 2010 Sep 22.
10
MAMOT: hidden Markov modeling tool.
Bioinformatics. 2008 Jun 1;24(11):1399-400. doi: 10.1093/bioinformatics/btn201. Epub 2008 Apr 25.

引用本文的文献

1
Repulsive parallel MCMC algorithm for discovering diverse motifs from large sequence sets.
Bioinformatics. 2015 May 15;31(10):1561-8. doi: 10.1093/bioinformatics/btv017. Epub 2015 Jan 11.
2
Accurate recognition of cis-regulatory motifs with the correct lengths in prokaryotic genomes.
Nucleic Acids Res. 2010 Jan;38(2):e12. doi: 10.1093/nar/gkp907. Epub 2009 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验