da Fonseca Paulo G S, Guimarães Katia S, Sagot Marie-France
Centro de Informática, Universidade Federal de Pernambuco, 50732-970 Recife, Brazil.
Bioinformatics. 2008 Aug 15;24(16):i160-6. doi: 10.1093/bioinformatics/btn282.
Position weight matrices (PWMs) have become a standard for representing biological sequence motifs. Their relative simplicity has favoured the development of efficient algorithms for diverse tasks such as motif identification, sequence scanning and statistical significance evaluation. Markov chainbased models generalize the PWM model by allowing for interposition dependencies to be considered, at the cost of substantial computational overhead, which may limit their application.
In this article, we consider two aspects regarding the use of higher order Markov models for biological sequence motifs, namely, the representation and the computation of P-values for motifs described by a set of occurrences. We propose an efficient representation based on the use of tries, from which empirical position-specific conditional base probabilities can be computed, and extend state-of-the-art PWM-based algorithms to allow for the computation of exact P-values for high-order Markov motif models.
The software is available in the form of a Java objectoriented library from http://www.cin.ufpe.br/approxiamtely paguso/kmarkov.
位置权重矩阵(PWMs)已成为表示生物序列基序的标准。其相对简单性有利于开发用于各种任务的高效算法,如基序识别、序列扫描和统计显著性评估。基于马尔可夫链的模型通过允许考虑插入依赖性来推广PWM模型,但代价是大量的计算开销,这可能会限制它们的应用。
在本文中,我们考虑了关于使用高阶马尔可夫模型处理生物序列基序的两个方面,即由一组出现情况描述的基序的表示和P值的计算。我们提出了一种基于使用tries树的有效表示方法,从中可以计算经验位置特定条件碱基概率,并扩展了基于PWM的现有算法,以允许计算高阶马尔可夫基序模型的精确P值。
该软件以Java面向对象库的形式提供,可从http://www.cin.ufpe.br/approxiamtely paguso/kmarkov获取。