Suppr超能文献

一种基于轮廓的确定性序贯蒙特卡罗基序发现算法。

A profile-based deterministic sequential Monte Carlo algorithm for motif discovery.

作者信息

Liang Kuo-Ching, Wang Xiaodong, Anastassiou Dimitris

机构信息

Columbia University, Department of Electrical Engineering, New York, NY 10025, USA.

出版信息

Bioinformatics. 2008 Jan 1;24(1):46-55. doi: 10.1093/bioinformatics/btm543. Epub 2007 Nov 17.

Abstract

MOTIVATION

Conserved motifs often represent biological significance, providing insight on biological aspects such as gene transcription regulation, biomolecular secondary structure, presence of non-coding RNAs and evolution history. With the increasing number of sequenced genomic data, faster and more accurate tools are needed to automate the process of motif discovery.

RESULTS

We propose a deterministic sequential Monte Carlo (DSMC) motif discovery technique based on the position weight matrix (PWM) model to locate conserved motifs in a given set of nucleotide sequences, and extend our model to search for instances of the motif with insertions/deletions. We show that the proposed method can be used to align the motif where there are insertions and deletions found in different instances of the motif, which cannot be satisfactorily done using other multiple alignment and motif discovery algorithms.

AVAILABILITY

MATLAB code is available at http://www.ee.columbia.edu/~kcliang

摘要

动机

保守基序通常具有生物学意义,能为基因转录调控、生物分子二级结构、非编码RNA的存在及进化历史等生物学方面提供见解。随着测序基因组数据数量的增加,需要更快、更准确的工具来自动化基序发现过程。

结果

我们提出了一种基于位置权重矩阵(PWM)模型的确定性序贯蒙特卡罗(DSMC)基序发现技术,用于在给定的核苷酸序列集中定位保守基序,并扩展我们的模型以搜索带有插入/缺失的基序实例。我们表明,所提出的方法可用于比对在基序的不同实例中发现有插入和缺失的基序,而使用其他多重比对和基序发现算法无法令人满意地完成此操作。

可用性

MATLAB代码可在http://www.ee.columbia.edu/~kcliang获取

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验