Abreu Bento J, Guimarães Maila, Uliana Livia C, Vigh Jozsef, von Gersdorff Henrique, Prado Marco A, Guatimosim Cristina
Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
Neurochem Int. 2008 Nov;53(5):155-64. doi: 10.1016/j.neuint.2008.07.004. Epub 2008 Jul 22.
The driving force for neurotransmitter accumulation into synaptic vesicles is provided by the generation of a transmembrane electrochemical gradient (DeltamicroH+) that has two components: a chemical gradient (DeltapH, inside acidic) and an electrical potential across the vesicular membrane (DeltaPsi, inside positive). This gradient is generated in situ by the electrogenic vacuolar H(+)-ATPase, which is responsible for the acidification and positive membrane potential of the vesicle lumen. Here, we investigate the modulation of vesicle acidification by using the acidic-organelle probe LysoTracker and the pH-sensitive probe LysoSensor at goldfish Mb-type bipolar cell terminals. Since phosphorylation can modulate secretory granule acidification in neuroendocrine cells, we investigated if drugs that affect protein kinases modulate LysoTracker staining of bipolar cell terminals. We find that protein kinase C (PKC) activation induces an increase in LysoTracker-fluorescence. By contrast, protein kinase A (PKA) or calcium/calmodulin kinase II (CaMKII) activation or inhibition did not change LysoTracker-fluorescence. Using a pH-dependent fluorescent dye (LysoSensor) we show that the PKC activation with PMA induces an increase in LysoSensor-fluorescence, whereas the inactive analog 4alpha-PMA was unable to cause the same effect. This increase induced by PMA was blocked by PKC inhibitors, calphostin C and staurosporine. These results suggest that phosphorylation by PKC may increase synaptic vesicle acidification in retinal bipolar cells and therefore has the potential to modulate glutamate concentrations inside synaptic vesicles.
神经递质积累到突触小泡中的驱动力来自跨膜电化学梯度(ΔμH⁺)的产生,该梯度有两个组成部分:化学梯度(ΔpH,内部呈酸性)和跨小泡膜的电势(ΔΨ,内部为正)。这种梯度由电生泡H⁺-ATP酶原位产生,该酶负责小泡腔的酸化和正膜电位。在这里,我们在金鱼Mb型双极细胞终末使用酸性细胞器探针溶酶体追踪染料和pH敏感探针溶酶体传感器来研究小泡酸化的调节。由于磷酸化可以调节神经内分泌细胞中分泌颗粒的酸化,我们研究了影响蛋白激酶的药物是否会调节双极细胞终末的溶酶体追踪染料染色。我们发现蛋白激酶C(PKC)激活会导致溶酶体追踪染料荧光增加。相比之下,蛋白激酶A(PKA)或钙/钙调蛋白激酶II(CaMKII)的激活或抑制不会改变溶酶体追踪染料荧光。使用pH依赖性荧光染料(溶酶体传感器),我们表明用佛波酯激活PKC会导致溶酶体传感器荧光增加,而无活性类似物4α-佛波酯则无法产生相同效果。佛波酯诱导的这种增加被PKC抑制剂钙泊三醇C和星形孢菌素阻断。这些结果表明,PKC磷酸化可能会增加视网膜双极细胞中突触小泡的酸化,因此有可能调节突触小泡内的谷氨酸浓度。