Suppr超能文献

运用人工神经网络技术对土耳其梅伦河的生物需氧量进行建模

Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique.

作者信息

Dogan Emrah, Sengorur Bülent, Koklu Rabia

机构信息

Civil Engineering Department, Sakarya University, Sakarya, Turkey.

出版信息

J Environ Manage. 2009 Feb;90(2):1229-35. doi: 10.1016/j.jenvman.2008.06.004. Epub 2008 Aug 8.

Abstract

Artificial neural networks (ANNs) are being used increasingly to predict and forecast water resources' variables. The feed-forward neural network modeling technique is the most widely used ANN type in water resources applications. The main purpose of the study is to investigate the abilities of an artificial neural networks' (ANNs) model to improve the accuracy of the biological oxygen demand (BOD) estimation. Many of the water quality variables (chemical oxygen demand, temperature, dissolved oxygen, water flow, chlorophyll a and nutrients, ammonia, nitrite, nitrate) that affect biological oxygen demand concentrations were collected at 11 sampling sites in the Melen River Basin during 2001-2002. To develop an ANN model for estimating BOD, the available data set was partitioned into a training set and a test set according to station. In order to reach an optimum amount of hidden layer nodes, nodes 2, 3, 5, 10 were tested. Within this range, the ANN architecture having 8 inputs and 1 hidden layer with 3 nodes gives the best choice. Comparison of results reveals that the ANN model gives reasonable estimates for the BOD prediction.

摘要

人工神经网络(ANNs)正越来越多地用于预测水资源变量。前馈神经网络建模技术是水资源应用中使用最广泛的人工神经网络类型。本研究的主要目的是研究人工神经网络(ANNs)模型提高生物需氧量(BOD)估算准确性的能力。2001年至2002年期间,在梅伦河流域的11个采样点收集了许多影响生物需氧量浓度的水质变量(化学需氧量、温度、溶解氧、水流、叶绿素a和营养物质、氨、亚硝酸盐、硝酸盐)。为了建立一个估算BOD的人工神经网络模型,根据站点将可用数据集划分为训练集和测试集。为了达到隐藏层节点的最佳数量,对2、3、5、10个节点进行了测试。在此范围内,具有8个输入和1个包含3个节点的隐藏层的人工神经网络架构是最佳选择。结果比较表明,人工神经网络模型对BOD预测给出了合理的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验