Suppr超能文献

[约束独立成分分析及其在去除脑电图伪迹中的应用]

[Constrained ICA and its application to removing artifacts in EEG].

作者信息

Gao Ansheng, Luo Yangyu, Chen Ken

机构信息

Departmnent of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, Citina.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008 Jun;25(3):497-501.

Abstract

Independent component analysis (ICA) is a statistic technique which extracts independent components from a set of standard signals. Since Electroencephalogram (EEG) signals are the mixture of several relatively independent sources, ICA has attracted extensive attention in the field of EEG processing. In this paper, a new Constrained ICA (cICA) algorithm is introduced, it would solve the problem of orderless output when FastICA algorithm is used. The experiment results testify that the cICA algorithm can reduce the effect of different individual when the artifacts of EEG are removed manually. The results also show that the cICA algorithm is robust and performs faster convergence.

摘要

独立成分分析(ICA)是一种从一组标准信号中提取独立成分的统计技术。由于脑电图(EEG)信号是多个相对独立源的混合信号,ICA在EEG处理领域引起了广泛关注。本文介绍了一种新的约束ICA(cICA)算法,它将解决使用FastICA算法时输出无序的问题。实验结果证明,在手动去除EEG伪迹时,cICA算法可以降低个体差异的影响。结果还表明,cICA算法具有鲁棒性且收敛速度更快。

相似文献

2
[Removal of artifacts from EEG signal].[从脑电图信号中去除伪迹]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2008 Apr;25(2):464-7, 471.
7
Automatic removal of eye-movement and blink artifacts from EEG signals.自动去除 EEG 信号中的眼动和眨眼伪迹。
Brain Topogr. 2010 Mar;23(1):105-14. doi: 10.1007/s10548-009-0131-4. Epub 2009 Dec 29.
10
Enhanced mu rhythm extraction using blind source separation and wavelet transform.使用盲源分离和小波变换增强μ节律提取
IEEE Trans Biomed Eng. 2009 Aug;56(8):2024-34. doi: 10.1109/TBME.2009.2021987. Epub 2009 May 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验