Suppr超能文献

用于识别特定重症监护综合征患者的规则库系统:急性肺损伤的“嗅探器”

Rule base system for identification of patients with specific critical care syndromes: The "sniffer" for acute lung injury.

作者信息

Herasevich V, Yilmaz M, Khan H, Chute C G, Gajic O

机构信息

Mayo Clinic College of Medicine, Rochester, MN, USA.

出版信息

AMIA Annu Symp Proc. 2007 Oct 11:972.

Abstract

Early detection of specific critical care syndromes, such as sepsis or acute lung injury (ALI)is essential for timely implementation of evidence based therapies. Using a near-real time copy of the electronic medical records ("ICU data mart") we developed and validated custom electronic alert (ALI"sniffer") in a cohort of 485 critically ill medical patients. Compared with the gold standard of prospective screening, ALI "sniffer" demonstrated good sensitivity, 93% (95% CI 90 to 95) and specificity, 90% (95% CI 87 to 92). It is not known if the bedside implementation of ALI "sniffer" will improve the adherence to evidence-based therapies and outcome of patients with ALI.

摘要

早期发现特定的重症监护综合征,如脓毒症或急性肺损伤(ALI),对于及时实施循证治疗至关重要。我们利用电子病历的近实时副本(“ICU数据集市”),在485例重症内科患者队列中开发并验证了定制的电子警报(ALI“嗅探器”)。与前瞻性筛查的金标准相比,ALI“嗅探器”显示出良好的敏感性,为93%(95%CI 90至95),特异性为90%(95%CI 87至92)。目前尚不清楚在床边应用ALI“嗅探器”是否会提高对ALI患者循证治疗的依从性及改善其预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验