Suppr超能文献

线粒体膜电位(ΔΨ)和质子梯度(ΔpH)对质子动力(Δp)贡献的控制。计算机模拟研究。

Control over the contribution of the mitochondrial membrane potential (DeltaPsi) and proton gradient (DeltapH) to the protonmotive force (Deltap). In silico studies.

作者信息

Dzbek Jaroslaw, Korzeniewski Bernard

机构信息

Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, PL30387 Kraków, Poland.

出版信息

J Biol Chem. 2008 Nov 28;283(48):33232-9. doi: 10.1074/jbc.M802404200. Epub 2008 Aug 11.

Abstract

The protonmotive force across the inner mitochondrial membrane (Deltap) has two components: membrane potential (DeltaPsi) and the gradient of proton concentration (DeltapH). The computer model of oxidative phosphorylation developed previously by Korzeniewski et al. (Korzeniewski, B., Noma, A., and Matsuoka, S. (2005) Biophys. Chem. 116, 145-157) was modified by including the K+ uniport, K+/H+ exchange across the inner mitochondrial membrane, and membrane capacitance to replace the fixed DeltaPsi/DeltapH ratio used previously with a variable one determined mechanistically. The extended model gave good agreement with experimental results. Computer simulations showed that the contribution of DeltaPsi and DeltapH to Deltap is determined by the ratio of the rate constants of the K+ uniport and K+/H+ exchange and not by the absolute values of these constants. The value of Deltap is mostly controlled by ATP usage. The metabolic control over the DeltaPsi/DeltapH ratio is exerted mostly by K+ uniport and K+/H+ exchange in the presence of these processes, and by the ATP usage, ATP/ADP carrier, and phosphate carrier in the absence of them. The K+ circulation across the inner mitochondrial membrane is controlled mainly by K+ uniport and K+/H+ exchange, whereas H+ circulation by ATP usage. It is demonstrated that the secondary K+ ion transport is not necessary for maintaining the physiological DeltaPsi/DeltapH ratio.

摘要

跨线粒体内膜的质子动力(Δp)有两个组成部分:膜电位(ΔΨ)和质子浓度梯度(ΔpH)。Korzeniewski等人(Korzeniewski, B., Noma, A., and Matsuoka, S. (2005) Biophys. Chem. 116, 145 - 157)之前开发的氧化磷酸化计算机模型进行了修改,纳入了钾离子单向转运、跨线粒体内膜的钾离子/氢离子交换以及膜电容,以用机械方式确定的可变比值取代先前使用的固定ΔΨ/ΔpH比值。扩展后的模型与实验结果吻合良好。计算机模拟表明,ΔΨ和ΔpH对Δp的贡献由钾离子单向转运和钾离子/氢离子交换的速率常数之比决定,而非这些常数的绝对值。Δp的值主要由ATP的使用情况控制。在存在这些过程时,对ΔΨ/ΔpH比值的代谢控制主要通过钾离子单向转运和钾离子/氢离子交换来实现;在不存在这些过程时,则通过ATP的使用、ATP/ADP载体和磷酸载体来实现。跨线粒体内膜的钾离子循环主要由钾离子单向转运和钾离子/氢离子交换控制,而氢离子循环则由ATP的使用控制。结果表明,维持生理ΔΨ/ΔpH比值并不需要次级钾离子转运。

相似文献

2
Proton motive force during growth of Streptococcus lactis cells.
J Bacteriol. 1980 Jul;143(1):128-34. doi: 10.1128/jb.143.1.128-134.1980.
3
The uniqueness of the plant mitochondrial potassium channel.
BMB Rep. 2013 Aug;46(8):391-7. doi: 10.5483/bmbrep.2013.46.8.075.
5
Impairment of pH gradient and membrane potential mediates redox dysfunction in the mitochondria of the post-ischemic heart.
Basic Res Cardiol. 2017 Jul;112(4):36. doi: 10.1007/s00395-017-0626-1. Epub 2017 May 16.
7
New extension of the Mitchell Theory for oxidative phosphorylation in mitochondria of living organisms.
Biochim Biophys Acta. 2010 Mar;1800(3):205-12. doi: 10.1016/j.bbagen.2009.04.019. Epub 2009 May 4.
8
Relation between the gradient of the ATP/ADP ratio and the membrane potential across the mitochondrial membrane.
Eur J Biochem. 1977 Feb 15;73(1):125-30. doi: 10.1111/j.1432-1033.1977.tb11298.x.
9
Deltapsi and DeltapH are equivalent driving forces for proton transport through isolated F(0) complexes of ATP synthases.
Biochim Biophys Acta. 2008 Oct;1777(10):1301-10. doi: 10.1016/j.bbabio.2008.06.008. Epub 2008 Jun 21.
10
Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force.
Am J Physiol Cell Physiol. 2005 Sep;289(3):C656-64. doi: 10.1152/ajpcell.00049.2005. Epub 2005 Apr 20.

引用本文的文献

1
Understanding the mechanisms of mitochondrial rewiring during viral infections.
J Gen Virol. 2025 Jul;106(7). doi: 10.1099/jgv.0.002128.
2
Aging-dependent evolving electrochemical potentials of biomolecular condensates regulate their physicochemical activities.
Nat Chem. 2025 May;17(5):756-766. doi: 10.1038/s41557-025-01762-7. Epub 2025 Mar 12.
3
Development and Application of a Mitochondrial Genetically Encoded Voltage Indicator in Narcosis.
Neurosci Bull. 2024 Oct;40(10):1529-1544. doi: 10.1007/s12264-024-01235-w. Epub 2024 Jun 3.
4
Mitochondrial Inherited Disorders and their Correlation with Neurodegenerative Diseases.
Endocr Metab Immune Disord Drug Targets. 2024;24(4):381-393. doi: 10.2174/0118715303250271231018103202.
7
Mitochondrial Retinopathies.
Int J Mol Sci. 2021 Dec 25;23(1):210. doi: 10.3390/ijms23010210.
9
AOP Report: Uncoupling of Oxidative Phosphorylation Leading to Growth Inhibition via Decreased Cell Proliferation.
Environ Toxicol Chem. 2021 Nov;40(11):2959-2967. doi: 10.1002/etc.5197. Epub 2021 Oct 14.

本文引用的文献

1
Commentary on: 'old and new data, new issues: the mitochondrial Deltapsi' by H. Tedeschi.
Biochim Biophys Acta. 2005 Dec 20;1710(2-3):63-5; discussion 66. doi: 10.1016/j.bbabio.2005.09.002. Epub 2005 Oct 5.
2
A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation.
PLoS Comput Biol. 2005 Sep;1(4):e36. doi: 10.1371/journal.pcbi.0010036. Epub 2005 Sep 9.
3
Regulation of oxidative phosphorylation in intact mammalian heart in vivo.
Biophys Chem. 2005 Jul 1;116(2):145-57. doi: 10.1016/j.bpc.2005.04.001. Epub 2005 Apr 25.
5
Mitochondrial potassium transport: the K(+) cycle.
Biochim Biophys Acta. 2003 Sep 30;1606(1-3):23-41. doi: 10.1016/s0005-2728(03)00108-7.
7
Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate.
J Biol Chem. 2003 Oct 3;278(40):39155-65. doi: 10.1074/jbc.M306409200. Epub 2003 Jul 18.
8
An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics.
Biophys J. 2003 Apr;84(4):2734-55. doi: 10.1016/S0006-3495(03)75079-6.
9
A model of oxidative phosphorylation in mammalian skeletal muscle.
Biophys Chem. 2001 Aug 30;92(1-2):17-34. doi: 10.1016/s0301-4622(01)00184-3.
10
Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise.
Physiol Rev. 2000 Oct;80(4):1411-81. doi: 10.1152/physrev.2000.80.4.1411.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验