Suppr超能文献

Direct effects of platelet-activating factor on isolated rat osteoclasts. Rapid elevation of intracellular free calcium and transient retraction of pseudopods.

作者信息

Wood D A, Hapak L K, Sims S M, Dixon S J

机构信息

Department of Physiology, Faculty of Dentistry, University of Western Ontario, London, Canada.

出版信息

J Biol Chem. 1991 Aug 15;266(23):15369-76.

PMID:1869559
Abstract

Platelet-activating factor (PAF, 1-O-alkyl-(2R)-acetylglycero-3-phosphocholine) is a potent inflammatory mediator whose actions on bone cells have not been investigated previously. In this study, we examined effects of PAF on osteoclast morphology and intracellular free calcium. Osteoclasts, the large multinucleated cells responsible for bone resorption, were isolated from neonatal rat long bones, and the cytosolic free calcium concentration ([Ca2+]i) of individual fura-2-loaded cells was monitored by microspectrofluorimetry. In one series of experiments, PAF was applied focally to single, isolated osteoclasts (1 nM to 1 microM racemic mixture, in an application micropipette). Within 10 s of PAF application, [Ca2+]i increased from basal levels of 74 +/- 6 nM to peak levels of 209 +/- 28 nM (mean +/- S.E. of 24 cells responding). These results indicate that PAF acted directly on osteoclasts. In more than 75% of cells tested, PAF, at concentrations greater than or equal to 10 pM (final concentration, in the bath), induced biphasic elevation of [Ca2+]i. This response was highly specific for PAF, in that vehicle, lyso-PAF (the biologically inactive precursor/metabolite of PAF), and (S)-PAF (the inactive enantiomer of PAF) all failed to change [Ca2+]i. Moreover, [Ca2+]i elevation was blocked by the specific PAF antagonist CV-3988. To determine the source of Ca2+, cells were bathed in Ca(2+)-free medium, where PAF still caused an increase in [Ca2+]i, establishing that the response to PAF arose, at least in part, by release of Ca2+ from internal stores. In addition to changes in [Ca2+]i, PAF caused retraction followed by respreading of peripheral pseudopods. These findings indicate that rat osteoclasts respond to PAF by release of internal calcium and alterations in cell morphology and suggest that PAF may regulate resorption in inflammatory bone diseases.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验