Gevorgyan Albert, Poolman Mark G, Fell David A
Cell Systems Modelling Group, School of Life Sciences, Oxford Brookes University, Oxford OX30BP, UK.
Bioinformatics. 2008 Oct 1;24(19):2245-51. doi: 10.1093/bioinformatics/btn425. Epub 2008 Aug 12.
Metabolic modelling provides a mathematically rigorous basis for system-level analysis of biochemical networks. However, the growing sizes of metabolic models can lead to serious problems in their construction and validation. In this work, we describe a relatively poorly investigated type of modelling error, called stoichiometric inconsistencies. These errors are caused by incorrect definitions of reaction stoichiometries and result in conflicts between two fundamental physical constraints to be satisfied by any valid metabolic model: positivity of molecular masses of all metabolites and mass conservation in all interconversions.
We introduce formal definitions of stoichiometric inconsistencies, inconsistent net stoichiometries, elementary leakage modes and other important fundamental properties of incorrectly defined biomolecular networks. Algorithms are described for the verification of stoichiometric consistency of a model, detection of unconserved metabolites and inconsistent minimal net stoichiometries. The usefulness of these algorithms for effective resolving of inconsistencies and for detection of input errors is demonstrated on a published genome-scale metabolic model of Saccharomyces cerevisiae and one of Streptococcus agalactiae constructed using the KEGG database.
代谢建模为生化网络的系统级分析提供了数学上严格的基础。然而,代谢模型规模的不断扩大可能会在其构建和验证过程中引发严重问题。在这项工作中,我们描述了一种研究相对较少的建模错误类型,称为化学计量不一致性。这些错误是由反应化学计量的错误定义引起的,并导致任何有效的代谢模型都要满足的两个基本物理约束之间产生冲突:所有代谢物分子质量的正值性以及所有相互转化中的质量守恒。
我们引入了化学计量不一致性、不一致的净化学计量、基本泄漏模式以及错误定义的生物分子网络的其他重要基本属性的形式化定义。描述了用于验证模型化学计量一致性、检测未守恒代谢物和不一致的最小净化学计量的算法。在一个已发表的酿酒酵母基因组规模代谢模型以及一个使用KEGG数据库构建的无乳链球菌模型上,展示了这些算法在有效解决不一致性和检测输入错误方面的实用性。