Suppr超能文献

初始血压正常个体的左心室质量与高血压发病:强心研究

Left ventricular mass and incident hypertension in individuals with initial optimal blood pressure: the Strong Heart Study.

作者信息

de Simone Giovanni, Devereux Richard B, Chinali Marcello, Roman Mary J, Welty Thomas K, Lee Elisa T, Howard Barbara V

机构信息

Weill-Cornell Medical College, New York, NY, USA.

出版信息

J Hypertens. 2008 Sep;26(9):1868-74. doi: 10.1097/HJH.0b013e3283050899.

Abstract

OBJECTIVE

Metabolic abnormalities have been shown to predict 8-year incident arterial hypertension in individuals with optimal blood pressure. As echocardiographic left ventricular mass has also been reported to predict incident hypertension in individuals with baseline blood pressure of less than 140/90 mmHg, we determined whether left ventricular mass predicts 4-year incident hypertension also in individuals with initial optimal blood pressure (<120/80 mmHg), independent of metabolic factors influencing blood pressure.

METHODS

We studied 777 of 3257 members of the American Indian population-based Strong Heart Study cohort with optimal blood pressure (34% men, 45% obese, and 35% diabetic), aged 57 +/- 7 years, and without prevalent cardiovascular disease.

RESULTS

Over 4 years, 159 individuals (20%, group H) developed hypertension (blood pressure >/=140/90 mmHg). They had a greater baseline BMI, waist girth, and blood pressure (112/69 vs. 109/68 mmHg, all P < 0.03) than those remaining normotensive (group N), with similar lipid profile and renal function. At baseline, left ventricular mass was significantly greater in group H than in group N (P < 0.004). The difference in left ventricular mass was confirmed after controlling for initial BMI, systolic blood pressure, homeostatic model assessment index, and diabetes. The probability of incident hypertension increased by 36% for each standard deviation of left ventricular mass index (P = 0.006), independent of covariates. Participants with left ventricular mass of more than 159 g (75th percentile of distribution) had 2.5-fold (95% confidence interval, 1.4-3.6; P < 0.001) higher adjusted risk of incident hypertension than those below this value.

CONCLUSION

Left ventricular mass predicts incident arterial hypertension in individuals with initially optimal blood pressure. This association is independent of body build, prevalent diabetes, and initial blood pressure.

摘要

目的

代谢异常已被证明可预测血压正常个体8年后发生动脉高血压的情况。由于据报道,超声心动图测量的左心室质量也可预测基线血压低于140/90 mmHg的个体发生高血压的情况,因此我们确定左心室质量是否也能预测初始血压正常(<120/80 mmHg)的个体4年后发生高血压的情况,且不受影响血压的代谢因素的影响。

方法

我们对基于美国印第安人群的强心脏研究队列中的3257名成员中的777名血压正常者进行了研究(男性占34%,肥胖者占45%,糖尿病患者占35%),年龄为57±7岁,且无心血管疾病史。

结果

在4年时间里,159名个体(20%,H组)患上了高血压(血压≥140/90 mmHg)。与仍保持血压正常的个体(N组)相比,他们的基线体重指数、腰围和血压更高(分别为112/69 mmHg和109/68 mmHg,P均<0.03),血脂谱和肾功能相似。基线时,H组的左心室质量显著高于N组(P<0.004)。在控制了初始体重指数、收缩压、稳态模型评估指数和糖尿病因素后,左心室质量的差异仍然存在。左心室质量指数每增加一个标准差,发生高血压的概率增加36%(P=0.006),且不受协变量的影响。左心室质量超过159 g(分布的第75百分位数)的参与者发生高血压的校正风险比低于此值的参与者高2.5倍(95%置信区间,1.4 - 3.6;P<0.001)。

结论

左心室质量可预测初始血压正常的个体发生动脉高血压的情况。这种关联独立于体型、糖尿病史和初始血压。

相似文献

引用本文的文献

3
Blood Pressure and Left Ventricular Geometric Changes: A Directionality Analysis.血压与左心室几何结构变化:方向分析。
Hypertension. 2021 Nov;78(5):1259-1266. doi: 10.1161/HYPERTENSIONAHA.121.18035. Epub 2021 Aug 30.
4
Left ventricular mass and incident hypertension: Missing pieces in the puzzle.左心室质量与高血压发病:谜题中的缺失部分。
J Clin Hypertens (Greenwich). 2020 Feb;22(2):299-300. doi: 10.1111/jch.13738. Epub 2019 Dec 1.
7
Hypertension Survey in Italy: Novel Findings from the Campania Salute Network.意大利高血压调查:坎帕尼亚健康网络的新发现。
High Blood Press Cardiovasc Prev. 2017 Dec;24(4):363-370. doi: 10.1007/s40292-017-0220-5. Epub 2017 Jul 1.
10
Left ventricular hypertrophy after hypertensive pregnancy disorders.高血压妊娠疾病后的左心室肥厚
Heart. 2015 Oct;101(19):1584-90. doi: 10.1136/heartjnl-2015-308098. Epub 2015 Aug 4.

本文引用的文献

1
2
Masked hypertension: a review.隐匿性高血压:综述
Hypertens Res. 2007 Jun;30(6):479-88. doi: 10.1291/hypres.30.479.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验