Suárez-Varela José, Mota Antonio J, Aouryaghal Hakima, Cano Joan, Rodríguez-Diéguez A, Luneau Dominique, Colacio Enrique
Departamento de Quimica Inorganica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
Inorg Chem. 2008 Sep 15;47(18):8143-58. doi: 10.1021/ic800625w. Epub 2008 Aug 13.
Seven new polynuclear copper(II) complexes of formula [Cu(mu-pymca)2] (1) (pymca(-) = pyrimidine-2-carboxylato), [Cu(mu-pymca)Br] (2), [Cu(mu-pymca)Cl] (3), [Cu(mu-pymca)(SCN)(H2O)] x 4 H2O (4), [Cu(mu-pymca)N3] (5), [Cu2(mu1,5-dca)2(pymca)2] (6) (dca = dicyanamide), and K{[mu-Au(CN)2]2[(Cu(NH3)2)2(mu-pymca)]}[Au(CN)2]2 (7) have been synthesized by reactions of K-pymca with copper(II) ions in the presence of different counteranions. Compound 1 is a linear neutral chain with a carboxylato bridging ligand in a syn-anti coordination mode, whereas complexes 2 and 3 consist of cationic linear chains with cis and trans bis(chelating) pymca bridging ligands. Complex 4 adopts a helical pymca-bridged chain structure. In complex 5, zigzag pymca-bridged chains are connected by double end-on azide bridging ligands to afford a unique honeycomb layer structure. Complex 6 is a centrosymmetric dinuclear system with double mu 1,5-dicyanamide bridging ligands and pymca end-cap ligands. Complex 7 is made of pymca-bridged dinuclear Cu(NH3)2(mu-pymca)Cu(NH3)2 units connected by Au(CN)2 anions to four other dinuclear units, giving rise to cationic (4,4) rectangular nets, which are linked by aurophilic interactions to afford a singular 3D network. Variable-temperature magnetic susceptibility measurements show that complex 1 exhibits a very weak antiferromagnetic coupling through the syn-anti (equatorial-axial) carboxylate bridge (J = -0.57 cm(-1)), whereas complexes 2-4 and 7 exhibit weak to strong antiferromagnetic couplings through the bis(chelating) pymca bridging ligand J = -17.5-276.1 cm(-1)). Quantum Monte Carlo methods have been used to analyze the experimental magnetic data for 5, leading to an antiferromagnetic coupling (J = -34 cm(-1)) through the pymca ligand and to a ferromagnetic coupling (J = 71 cm(-1)) through the azide bridging ligands. Complex 6 exhibits a very weak antiferromagnetic coupling through the dicyanamide bridging ligands (J = -5.1 cm(-1)). The magnitudes of the magnetic couplings in complexes 2-5 have been explained on the basis of the overlapping between magnetic orbitals and DFT theoretical calculations.
通过在不同抗衡阴离子存在下,使K - pymca与铜(II)离子反应,合成了七种新的多核铜(II)配合物,其化学式分别为[Cu(μ - pymca)₂] (1)(pymca⁻ = 嘧啶 - 2 - 羧基)、[Cu(μ - pymca)Br] (2)、[Cu(μ - pymca)Cl] (3)、[Cu(μ - pymca)(SCN)(H₂O)]·4H₂O (4)、[Cu(μ - pymca)N₃] (5)、[Cu₂(μ₁,₅ - dca)₂(pymca)₂] (6)(dca = 双氰胺)和K{[μ - Au(CN)₂]₂[(Cu(NH₃)₂)₂(μ - pymca)]}[Au(CN)₂]₂ (7)。化合物1是一种线性中性链,具有以顺 - 反配位模式的羧基桥连配体,而配合物2和3由具有顺式和反式双(螯合)pymca桥连配体的阳离子线性链组成。配合物4采用螺旋状pymca桥连链结构。在配合物5中,锯齿状pymca桥连链通过双端基叠氮桥连配体连接,形成独特的蜂窝层结构。配合物6是具有双μ₁,₅ - 双氰胺桥连配体和pymca端帽配体的中心对称双核体系。配合物7由pymca桥连的双核Cu(NH₃)₂(μ - pymca)Cu(NH₃)₂单元组成,通过[Au(CN)₂]⁻阴离子与另外四个双核单元相连,形成阳离子(4,4)矩形网络,这些网络通过亲金相互作用连接,形成独特的三维网络。变温磁化率测量表明,配合物1通过顺 - 反(赤道 - 轴向)羧酸盐桥表现出非常弱的反铁磁耦合(J = -0.57 cm⁻¹),而配合物2 - 4和7通过双(螯合)pymca桥连配体表现出弱到强的反铁磁耦合(J = -17.5 - 276.1 cm⁻¹)。量子蒙特卡罗方法已用于分析配合物5的实验磁数据,得出通过pymca配体的反铁磁耦合(J = -34 cm⁻¹)和通过叠氮桥连配体的铁磁耦合(J = 71 cm⁻¹)。配合物6通过双氰胺桥连配体表现出非常弱的反铁磁耦合(J = -5.1 cm⁻¹)。基于磁轨道之间的重叠和DFT理论计算,解释了配合物2 - 5中磁耦合的大小。