School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, 300070, PR China.
Dalton Trans. 2010 Aug 14;39(30):7159-66. doi: 10.1039/c003226c. Epub 2010 Jul 2.
The directed assembly of N,N-bis(benzimidazol-2-yl-methyl)amine (BMA) with Cu(II), Mn(II), Ni(II) and Zn(II) salts based on dicyanamide (mu(1,5)-dca) and terephthalate (mu-ta) linear bridging ligands, respectively, leads to four novel compounds: Cu(BMA)(mu(1,5)-dca)(ClO(4)) (1), {[Mn(BMA)(mu(1,5)-dca)(CH(3)OH)] x ClO(4) x C(10)H(9)N(3)O x CH(3)OH}(n) (2), {[Ni(2)(BMA)(2)(mu-ta)(mu(1,5)-dca)] x ClO(4) x CH(3)OH x H(2)O}(n) (3), and {[Zn(2)(BMA)(2)(mu-ta)(mu(1,5)-dca)] x ClO(4) x CH(3)OH}(n) (4), which were characterized by single-crystal X-ray diffraction, elemental analysis, IR, fluorescence spectroscopy, and magnetic measurement. X-Ray analysis revealed that 1 and 2 are two infinite 1D coordination polymers, in which dca units serving as an end-to-end out-of-plane bridge bring about linear chains for 1 and zigzag chains for 2. Complexes 3 and 4 are similar, in which the metal atoms are bridged alternately by terephthalate and mu(1,5)-dicyanamide ligands into 1D zigzag chains. In all these complexes, each BMA ligand adopts a tridentate chelating mode to coordinate with a transition metal forming a M(BMA) node. Different rigidity bridging ligands together with the stereochemistry and supramolecular effects of benzimidazol planes may result in the dramatic structural changes from 1D to multidimensional networks for all 1-4. Fluorescent measurements established that, in solution, complex 3 displays weak blue luminescence which originates from the BMA but is significantly red-shifted and has a much lower emission intensity, compared to the free BMA ligand. Complex 4 shows stronger luminescence than 3 and still reduces luminescence efficiency compared to the free BMA ligand. The variable-temperature magnetic susceptibility measurements (2-300 K) of 1 and 3 show the dominant weak ferromagnetic interactions between the copper(II) centers with J = 3.02 cm(-1), zJ' = -2.70 cm(-1) for 1, and the nickel(II) centers with J = 1.94 cm(-1), J'; = -0.38 cm(-1) for 3, while weak antiferromagnetic interactions between the Mn(II) centers for 2 with J = -0.27 cm(-1).
基于双氰胺(μ1,5-dca)和对苯二甲酸(μ-ta)的线性桥联配体,分别将 N,N-二(苯并咪唑-2-基甲基)胺(BMA)与 Cu(II)、Mn(II)、Ni(II)和 Zn(II)盐定向组装,得到四个新化合物:[Cu(BMA)(μ1,5-dca)(ClO4)]n(1),{[Mn(BMA)(μ1,5-dca)(CH3OH)] x ClO4 x C10H9N3O x CH3OH}(n)(2),{[Ni2(BMA)2(μ-ta)(μ1,5-dca)] x ClO4 x CH3OH x H2O}(n)(3),和{[Zn2(BMA)2(μ-ta)(μ1,5-dca)] x ClO4 x CH3OH}(n)(4),它们通过单晶 X 射线衍射、元素分析、IR、荧光光谱和磁性测量进行了表征。X 射线分析表明,1 和 2 是两个无限的 1D 配位聚合物,其中 dca 单元作为面外的端到端桥接,使 1 形成线性链,2 形成之字形链。配合物 3 和 4 相似,其中金属原子通过对苯二甲酸和 μ1,5-二氰基酰胺配体交替桥接形成 1D 之字形链。在所有这些配合物中,每个 BMA 配体采用三齿螯合模式与过渡金属配位,形成[M(BMA)]2+节点。不同刚性的桥联配体以及苯并咪唑平面的立体化学和超分子效应可能导致所有 1-4 的结构从 1D 急剧变化为多维网络。荧光测量确定,在溶液中,配合物 3 显示出较弱的蓝色发光,其来源于 BMA,但与游离 BMA 配体相比,发光明显红移,发射强度较低。与 3 相比,配合物 4 显示出更强的发光,但与游离 BMA 配体相比,发光效率仍然降低。1 和 3 的变温磁导率测量(2-300 K)表明,铜(II)中心之间存在主导的弱铁磁相互作用,J = 3.02 cm-1,zJ' = -2.70 cm-1,对于 1,镍(II)中心之间存在弱铁磁相互作用,J = 1.94 cm-1,J' = -0.38 cm-1,对于 3,而对于 2 中的 Mn(II)中心存在较弱的反铁磁相互作用,J = -0.27 cm-1。