Suppr超能文献

用于在血液透析期间实时监测尿素清除情况的在线近红外光谱仪。

On-line near-infrared spectrometer to monitor urea removal in real time during hemodialysis.

作者信息

Cho David S, Olesberg Jonathon T, Flanigan Michael J, Arnold Mark A

机构信息

Department of Chemistry and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA.

出版信息

Appl Spectrosc. 2008 Aug;62(8):866-72. doi: 10.1366/000370208785284411.

Abstract

The ex vivo removal of urea during hemodialysis treatments is monitored in real time with a noninvasive near-infrared spectrometer. The spectrometer uses a temperature-controlled acousto optical tunable filter (AOFT) in conjunction with a thermoelectrically cooled extended wavelength InGaAs detector to provide spectra with a 20 cm(-1) resolution over the combination region (4000-5000 cm(-1)) of the near-infrared spectrum. Spectra are signal averaged over 15 seconds to provide root mean square noise levels of 24 micro-absorbance units for 100% lines generated over the 4600-4500 cm(-1) spectral range. Combination spectra of the spent dialysate stream are collected in real-time as a portion of this stream passes through a sample holder constructed from a 1.1 mm inner diameter tube of Teflon. Real-time spectra are collected during 17 individual dialysis sessions over a period of 10 days. Reference samples were extracted periodically during each session to generate 87 unique samples with corresponding reference concentrations for urea, glucose, lactate, and creatinine. A series of calibration models are generated for urea by using the partial least squares (PLS) algorithm and each model is optimized in terms of number of factors and spectral range. The best calibration model gives a standard error of prediction (SEP) of 0.30 mM based on a random splitting of spectra generated from all 87 reference samples collected across the 17 dialysis sessions. PLS models were also developed by using spectra collected in early sessions to predict urea concentrations from spectra collected in subsequent sessions. SEP values for these prospective models range from 0.37 mM to 0.52 mM. Although higher than when spectra are pooled from all 17 sessions, these prospective SEP values are acceptable for monitoring the hemodialysis process. Selectivity for urea is demonstrated and the selectivity properties of the PLS calibration models are characterized with a pure component selectivity analysis.

摘要

在血液透析治疗期间,使用无创近红外光谱仪实时监测尿素的体外清除情况。该光谱仪采用温度控制的声光可调滤光器(AOFT),结合热电冷却的扩展波长铟镓砷探测器,在近红外光谱的组合区域(4000 - 5000 cm(-1))提供分辨率为20 cm(-1)的光谱。光谱在15秒内进行信号平均,以在4600 - 4500 cm(-1)光谱范围内生成的100%谱线提供24微吸光度单位的均方根噪声水平。当一部分用过的透析液流通过由内径1.1毫米的聚四氟乙烯管制成的样品架时,实时收集其组合光谱。在10天的时间内,在17次单独的透析过程中收集实时光谱。在每个过程中定期提取参考样品,以生成87个具有相应尿素、葡萄糖、乳酸和肌酐参考浓度的独特样品。通过使用偏最小二乘法(PLS)算法为尿素生成一系列校准模型,并且每个模型在因子数量和光谱范围方面进行了优化。基于对在17次透析过程中收集的所有87个参考样品生成的光谱进行随机拆分,最佳校准模型给出的预测标准误差(SEP)为0.30 mM。还通过使用在早期过程中收集的光谱来开发PLS模型,以根据在后续过程中收集的光谱预测尿素浓度。这些前瞻性模型的SEP值范围为0.37 mM至0.52 mM。尽管高于将所有17个过程的光谱合并时的值,但这些前瞻性SEP值对于监测血液透析过程是可以接受的。证明了对尿素的选择性,并通过纯组分选择性分析对PLS校准模型的选择性特性进行了表征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验