Suppr超能文献

来自嗜热栖热菌的糖原脱支酶TreX双功能机制的结构洞察。

Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the archaeon Sulfolobus solfataricus.

作者信息

Woo Eui-Jeon, Lee Seungjae, Cha Hyunju, Park Jong-Tae, Yoon Sei-Mee, Song Hyung-Nam, Park Kwan-Hwa

机构信息

Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806.

出版信息

J Biol Chem. 2008 Oct 17;283(42):28641-8. doi: 10.1074/jbc.M802560200. Epub 2008 Aug 14.

Abstract

TreX is an archaeal glycogen-debranching enzyme that exists in two oligomeric states in solution, as a dimer and tetramer. Unlike its homologs, TreX from Sulfolobus solfataricus shows dual activities for alpha-1,4-transferase and alpha-1,6-glucosidase. To understand this bifunctional mechanism, we determined the crystal structure of TreX in complex with an acarbose ligand. The acarbose intermediate was covalently bound to Asp363, occupying subsites -1 to -3. Although generally similar to the monomeric structure of isoamylase, TreX exhibits two different active-site configurations depending on its oligomeric state. The N terminus of one subunit is located at the active site of the other molecule, resulting in a reshaping of the active site in the tetramer. This is accompanied by a large shift in the "flexible loop" (amino acids 399-416), creating connected holes inside the tetramer. Mutations in the N-terminal region result in a sharp increase in alpha-1,4-transferase activity and a reduced level of alpha-1,6-glucosidase activity. On the basis of geometrical analysis of the active site and mutational study, we suggest that the structural lid (acids 99-97) at the active site generated by the tetramerization is closely associated with the bifunctionality and in particular with the alpha-1,4-transferase activity. These results provide a structural basis for the modulation of activities upon TreX oligomerization that may represent a common mode of action for other glycogen-debranching enzymes in higher organisms.

摘要

TreX是一种古菌糖原脱支酶,在溶液中以两种寡聚状态存在,即二聚体和四聚体。与它的同源物不同,来自嗜热栖热菌的TreX对α-1,4-转移酶和α-1,6-葡萄糖苷酶具有双重活性。为了理解这种双功能机制,我们确定了与阿卡波糖配体结合的TreX的晶体结构。阿卡波糖中间体共价结合到Asp363上,占据亚位点-1至-3。虽然TreX总体上与异淀粉酶的单体结构相似,但根据其寡聚状态,它表现出两种不同的活性位点构型。一个亚基的N末端位于另一个分子的活性位点,导致四聚体中活性位点的重塑。这伴随着“柔性环”(氨基酸399 - 416)的大幅移动,在四聚体内形成连通孔。N末端区域的突变导致α-1,4-转移酶活性急剧增加,α-1,6-葡萄糖苷酶活性水平降低。基于活性位点的几何分析和突变研究,我们认为由四聚化产生的活性位点处的结构盖子(氨基酸99 - 97)与双功能密切相关,特别是与α-1,4-转移酶活性相关。这些结果为TreX寡聚化时活性调节提供了结构基础,这可能代表高等生物中其他糖原脱支酶的一种常见作用模式。

相似文献

1
2
TreX from Sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-alpha-glucanotransferase activities.
Biosci Biotechnol Biochem. 2007 May;71(5):1348-52. doi: 10.1271/bbb.70016. Epub 2007 May 7.
6
Association of bi-functional activity in the N-terminal domain of glycogen debranching enzyme.
Biochem Biophys Res Commun. 2014 Feb 28;445(1):107-12. doi: 10.1016/j.bbrc.2014.01.134. Epub 2014 Jan 31.
7
Identification of the catalytic residues of bifunctional glycogen debranching enzyme.
J Biol Chem. 2001 Aug 3;276(31):28824-8. doi: 10.1074/jbc.M102192200. Epub 2001 May 25.
9
Crystal structure of α-1,4-glucan lyase, a unique glycoside hydrolase family member with a novel catalytic mechanism.
J Biol Chem. 2013 Sep 13;288(37):26764-74. doi: 10.1074/jbc.M113.485896. Epub 2013 Jul 31.

引用本文的文献

2
Molecular architecture and catalytic mechanism of human glycogen debranching enzyme.
Nat Commun. 2025 Jul 1;16(1):5962. doi: 10.1038/s41467-025-61077-6.
4
Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes.
Chem Rev. 2024 Apr 24;124(8):4863-4934. doi: 10.1021/acs.chemrev.3c00811. Epub 2024 Apr 12.
5
Evolutionary patterns of archaea predominant in acidic environment.
Environ Microbiome. 2023 Jul 18;18(1):61. doi: 10.1186/s40793-023-00518-5.
7
Allosteric regulation of glycogen breakdown by the second messenger cyclic di-GMP.
Nat Commun. 2022 Oct 3;13(1):5834. doi: 10.1038/s41467-022-33537-w.
8
Identification of the Genes Related to the Glycogen Metabolism in Hyperthermophilic Archaeon, .
Front Microbiol. 2021 May 13;12:661053. doi: 10.3389/fmicb.2021.661053. eCollection 2021.
9
Glycogen metabolism of the anammox bacterium "Candidatus Brocadia sinica".
ISME J. 2021 May;15(5):1287-1301. doi: 10.1038/s41396-020-00850-5. Epub 2020 Dec 7.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
TreX from Sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-alpha-glucanotransferase activities.
Biosci Biotechnol Biochem. 2007 May;71(5):1348-52. doi: 10.1271/bbb.70016. Epub 2007 May 7.
3
Three-way stabilization of the covalent intermediate in amylomaltase, an alpha-amylase-like transglycosylase.
J Biol Chem. 2007 Jun 8;282(23):17242-9. doi: 10.1074/jbc.M701444200. Epub 2007 Apr 9.
5
Activation of 4-alpha-glucanotransferase activity of porcine liver glycogen debranching enzyme with cyclodextrins.
J Biochem. 2006 Jul;140(1):135-40. doi: 10.1093/jb/mvj129. Epub 2006 Jun 23.
6
Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site.
J Mol Biol. 2006 Jun 9;359(3):690-707. doi: 10.1016/j.jmb.2006.03.058. Epub 2006 Apr 18.
7
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.
8
The CCP4 suite: programs for protein crystallography.
Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3. doi: 10.1107/S0907444994003112.
9
Crystal structures of 4-alpha-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor.
J Biol Chem. 2003 May 23;278(21):19378-86. doi: 10.1074/jbc.M213134200. Epub 2003 Mar 4.
10
Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase.
J Mol Biol. 2003 Feb 7;326(1):177-88. doi: 10.1016/s0022-2836(02)01402-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验