Suppr超能文献

人类传导气道表面上皮和黏膜下腺中的差异基因表达

Differential gene expression in human conducting airway surface epithelia and submucosal glands.

作者信息

Fischer Anthony J, Goss Kelli L, Scheetz Todd E, Wohlford-Lenane Christine L, Snyder Jeanne M, McCray Paul B

机构信息

Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Am J Respir Cell Mol Biol. 2009 Feb;40(2):189-99. doi: 10.1165/rcmb.2008-0240OC. Epub 2008 Aug 14.

Abstract

Human conducting airways contain two anatomically distinct epithelial cell compartments: surface epithelium and submucosal glands (SMG). Surface epithelial cells interface directly with the environment and function in pathogen detection, fluid and electrolyte transport, and mucus elevation. SMG secrete antimicrobial molecules and most of the airway surface fluid. Despite the unique functional roles of surface epithelia and SMG, little is known about the differences in gene expression and cellular metabolism that orchestrate the specialized functions of these epithelial compartments. To approach this problem, we performed large-scale transcript profiling using epithelial cell samples obtained by laser capture microdissection (LCM) of human bronchus specimens. We found that SMG expressed high levels of many transcripts encoding known or putative innate immune factors, including lactoferrin, zinc alpha-2 glycoprotein, and proline-rich protein 4. By contrast, surface epithelial cells expressed high levels of genes involved in basic nutrient catabolism, xenobiotic clearance, and ciliated structure assembly. Selected confirmation of differentially expressed genes in surface and SMG epithelia demonstrated the predictive power of this approach in identifying genes with localized tissue expression. To characterize metabolic differences between surface epithelial cells and SMG, immunostaining for a mitochondrial marker (isocitrate dehydrogenase) was performed. Because greater staining was observed in the surface compartment, we predict that these cells use significantly more energy than SMG cells. This study illustrates the power of LCM in defining the roles of specific anatomic features in airway biology and may be useful in examining how disease states alter transcriptional programs in the conducting airways.

摘要

人类传导气道包含两个在解剖学上截然不同的上皮细胞区室

表面上皮和黏膜下腺(SMG)。表面上皮细胞直接与外界环境接触,在病原体检测、液体和电解质运输以及黏液提升方面发挥作用。黏膜下腺分泌抗菌分子和大部分气道表面液体。尽管表面上皮和黏膜下腺具有独特的功能作用,但对于协调这些上皮区室特殊功能的基因表达和细胞代谢差异却知之甚少。为了解决这个问题,我们使用通过对人支气管标本进行激光捕获显微切割(LCM)获得的上皮细胞样本进行了大规模转录谱分析。我们发现黏膜下腺表达了许多编码已知或推定的固有免疫因子的转录本,包括乳铁蛋白、锌α-2糖蛋白和富含脯氨酸的蛋白4。相比之下,表面上皮细胞表达了参与基本营养物质分解代谢、外源性物质清除和纤毛结构组装的高水平基因。对表面和黏膜下腺上皮中差异表达基因的选定验证证明了这种方法在鉴定具有局部组织表达的基因方面的预测能力。为了表征表面上皮细胞和黏膜下腺之间的代谢差异,对线粒体标记物(异柠檬酸脱氢酶)进行了免疫染色。由于在表面区室观察到更强的染色,我们预测这些细胞比黏膜下腺细胞消耗的能量要多得多。这项研究说明了激光捕获显微切割在定义气道生物学中特定解剖特征的作用方面的能力,并且可能有助于研究疾病状态如何改变传导气道中的转录程序。

相似文献

1
Differential gene expression in human conducting airway surface epithelia and submucosal glands.
Am J Respir Cell Mol Biol. 2009 Feb;40(2):189-99. doi: 10.1165/rcmb.2008-0240OC. Epub 2008 Aug 14.
2
Wnt Signaling Regulates Airway Epithelial Stem Cells in Adult Murine Submucosal Glands.
Stem Cells. 2016 Nov;34(11):2758-2771. doi: 10.1002/stem.2443. Epub 2016 Jul 11.
3
Airway glandular development and stem cells.
Curr Top Dev Biol. 2004;64:33-56. doi: 10.1016/S0070-2153(04)64003-8.
4
Human LPLUNC1 is a secreted product of goblet cells and minor glands of the respiratory and upper aerodigestive tracts.
Histochem Cell Biol. 2010 May;133(5):505-15. doi: 10.1007/s00418-010-0683-0. Epub 2010 Mar 18.
5
Myoepithelial Cells of Submucosal Glands Can Function as Reserve Stem Cells to Regenerate Airways after Injury.
Cell Stem Cell. 2018 May 3;22(5):668-683.e6. doi: 10.1016/j.stem.2018.03.018. Epub 2018 Apr 12.
6
Synergistic mucus secretion by histamine and IL-4 through TMEM16A in airway epithelium.
Am J Physiol Lung Cell Mol Physiol. 2017 Sep 1;313(3):L466-L476. doi: 10.1152/ajplung.00103.2017. Epub 2017 May 25.
7
Ca²⁺ signaling and fluid secretion by secretory cells of the airway epithelium.
Cell Calcium. 2014 Jun;55(6):325-36. doi: 10.1016/j.ceca.2014.02.001. Epub 2014 Feb 11.
8
Lack of airway submucosal glands impairs respiratory host defenses.
Elife. 2020 Oct 7;9:e59653. doi: 10.7554/eLife.59653.
10
Transcriptional profiling of mucociliary differentiation in human airway epithelial cells.
Am J Respir Cell Mol Biol. 2007 Aug;37(2):169-85. doi: 10.1165/rcmb.2006-0466OC. Epub 2007 Apr 5.

引用本文的文献

1
Proteome of airway surface liquid and mucus in newborn wildtype and cystic fibrosis piglets.
Respir Res. 2023 Mar 16;24(1):83. doi: 10.1186/s12931-023-02381-x.
2
Cell-intrinsic differences between human airway epithelial cells from children and adults.
iScience. 2022 Oct 20;25(11):105409. doi: 10.1016/j.isci.2022.105409. eCollection 2022 Nov 18.
5
Physiology and pathophysiology of human airway mucus.
Physiol Rev. 2022 Oct 1;102(4):1757-1836. doi: 10.1152/physrev.00004.2021. Epub 2022 Jan 10.
7
Stem Cell-derived Respiratory Epithelial Cell Cultures as Human Disease Models.
Am J Respir Cell Mol Biol. 2021 Jun;64(6):657-668. doi: 10.1165/rcmb.2020-0440TR.
8
Secretory Cells Dominate Airway CFTR Expression and Function in Human Airway Superficial Epithelia.
Am J Respir Crit Care Med. 2021 May 15;203(10):1275-1289. doi: 10.1164/rccm.202008-3198OC.
9
Lack of airway submucosal glands impairs respiratory host defenses.
Elife. 2020 Oct 7;9:e59653. doi: 10.7554/eLife.59653.
10
The transcriptional signature associated with human motile cilia.
Sci Rep. 2020 Jul 2;10(1):10814. doi: 10.1038/s41598-020-66453-4.

本文引用的文献

1
Innate immune functions of the airway epithelium.
Contrib Microbiol. 2008;15:147-163. doi: 10.1159/000136349.
2
When cilia go bad: cilia defects and ciliopathies.
Nat Rev Mol Cell Biol. 2007 Nov;8(11):880-93. doi: 10.1038/nrm2278.
3
GSEA-P: a desktop application for Gene Set Enrichment Analysis.
Bioinformatics. 2007 Dec 1;23(23):3251-3. doi: 10.1093/bioinformatics/btm369. Epub 2007 Jul 20.
4
Radial spoke protein 44 (human meichroacidin) is an axonemal alloantigen of sperm and cilia.
Gene. 2007 Jul 1;396(1):93-107. doi: 10.1016/j.gene.2007.02.031. Epub 2007 Mar 23.
5
Transcriptional profiling of mucociliary differentiation in human airway epithelial cells.
Am J Respir Cell Mol Biol. 2007 Aug;37(2):169-85. doi: 10.1165/rcmb.2006-0466OC. Epub 2007 Apr 5.
6
Plasma cells and IL-4 in chronic bronchitis and chronic obstructive pulmonary disease.
Am J Respir Crit Care Med. 2007 Jun 1;175(11):1125-33. doi: 10.1164/rccm.200602-161OC. Epub 2007 Feb 22.
7
The lactoperoxidase system links anion transport to host defense in cystic fibrosis.
FEBS Lett. 2007 Jan 23;581(2):271-8. doi: 10.1016/j.febslet.2006.12.025. Epub 2006 Dec 19.
8
Modification of gene expression of the small airway epithelium in response to cigarette smoking.
J Mol Med (Berl). 2007 Jan;85(1):39-53. doi: 10.1007/s00109-006-0103-z. Epub 2006 Nov 8.
9
A novel host defense system of airways is defective in cystic fibrosis.
Am J Respir Crit Care Med. 2007 Jan 15;175(2):174-83. doi: 10.1164/rccm.200607-1029OC. Epub 2006 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验