Suppr超能文献

学习向量量化神经网络提高经颅彩色编码双功超声检测大脑中动脉痉挛的准确性——初步报告。

Learning vector quantization neural networks improve accuracy of transcranial color-coded duplex sonography in detection of middle cerebral artery spasm--preliminary report.

作者信息

Swiercz Miroslaw, Kochanowicz Jan, Weigele John, Hurst Robert, Liebeskind David S, Mariak Zenon, Melhem Elias R, Krejza Jaroslaw

机构信息

Bialystok Technical University, Faculty of Electrical Engineering, ul. Wiejska 45D, 15-351, Bialystok, Poland.

出版信息

Neuroinformatics. 2008 Winter;6(4):279-90. doi: 10.1007/s12021-008-9023-0. Epub 2008 Aug 13.

Abstract

To determine the performance of an artificial neural network in transcranial color-coded duplex sonography (TCCS) diagnosis of middle cerebral artery (MCA) spasm. TCCS was prospectively acquired within 2 h prior to routine cerebral angiography in 100 consecutive patients (54M:46F, median age 50 years). Angiographic MCA vasospasm was classified as mild (<25% of vessel caliber reduction), moderate (25-50%), or severe (>50%). A Learning Vector Quantization neural network classified MCA spasm based on TCCS peak-systolic, mean, and end-diastolic velocity data. During a four-class discrimination task, accurate classification by the network ranged from 64.9% to 72.3%, depending on the number of neurons in the Kohonen layer. Accurate classification of vasospasm ranged from 79.6% to 87.6%, with an accuracy of 84.7% to 92.1% for the detection of moderate-to-severe vasospasm. An artificial neural network may increase the accuracy of TCCS in diagnosis of MCA spasm.

摘要

为确定人工神经网络在经颅彩色编码双功能超声(TCCS)诊断大脑中动脉(MCA)痉挛中的性能。在100例连续患者(54例男性:46例女性,中位年龄50岁)进行常规脑血管造影前2小时内前瞻性采集TCCS。血管造影的MCA血管痉挛分为轻度(血管管径缩小<25%)、中度(25%-50%)或重度(>50%)。学习向量量化神经网络根据TCCS的收缩期峰值、平均和舒张末期速度数据对MCA痉挛进行分类。在四类判别任务中,根据科霍宁层中神经元的数量,网络的准确分类范围为64.9%至72.3%。血管痉挛的准确分类范围为79.6%至87.6%,检测中度至重度血管痉挛的准确率为84.7%至92.1%。人工神经网络可能会提高TCCS诊断MCA痉挛的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验