Suppr超能文献

投射到小鼠蚓垂-小结中局灶性浦肯野细胞的颗粒细胞分布

Distribution of granule cells projecting to focal Purkinje cells in mouse uvula-nodulus.

作者信息

Barmack N H, Yakhnitsa V

机构信息

Department of Physiology and Pharmacology, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA.

出版信息

Neuroscience. 2008 Sep 22;156(1):216-21. doi: 10.1016/j.neuroscience.2008.07.030. Epub 2008 Jul 25.

Abstract

Mossy and climbing fibers convey a broad array of signals from vestibular end organs to Purkinje cells in the vestibulo-cerebellum. We have shown previously that Purkinje cell simple spikes (SSs) and climbing fiber-evoked complex spikes (CSs) in the mouse uvula-nodulus are arrayed in 400 microm wide sagittal climbing fiber zones corresponding to the rotational axes of the vertical semicircular canals. It is often assumed that mossy fibers modulate a higher frequency of SSs through the intermediary action of granule cells whose parallel fibers course through the Purkinje cell dendritic tree. This assumption is complicated by the diffuse topography of vestibular primary afferent mossy fiber projections to the uvula-nodulus and the dispersion of mossy fiber signals along folial axes by parallel fibers. Here we measure this parallel fiber dispersion. We made microinjections of neurobiotin into the molecular layers of different folia within the mouse vestibulo-cerebellum and measured the distribution of granule cells retrogradely labeled by the injected neurobiotin. Sixty-two percent of labeled granule cells were located outside a 400 microm sagittal zone flanking the injection site. The dispersion of labeled granule cells was approximately 2.5 mm along folial axes that were 2.7-2.9 mm wide. Our data suggest that topographic specificity of SSs could not be attributed to the topography of vestibular primary afferent mossy fiber-granule cell projections. Rather the response specificity of SSs must be attributed to other mechanisms related to climbing fiber-evoked Purkinje cell and interneuronal activity.

摘要

苔藓纤维和攀缘纤维从前庭终器向前庭小脑的浦肯野细胞传递大量信号。我们之前已经表明,小鼠蚓垂-小结中的浦肯野细胞简单锋电位(SSs)和攀缘纤维诱发的复合锋电位(CSs)排列在与垂直半规管旋转轴相对应的400微米宽的矢状攀缘纤维带中。人们通常认为,苔藓纤维通过颗粒细胞的中介作用调节更高频率的SSs,颗粒细胞的平行纤维穿过浦肯野细胞树突。前庭初级传入苔藓纤维向前庭小脑蚓垂-小结的弥散性拓扑结构以及苔藓纤维信号沿小叶轴被平行纤维分散,使得这一假设变得复杂。在这里,我们测量了这种平行纤维分散。我们将神经生物素显微注射到小鼠前庭小脑不同小叶的分子层中,并测量了被注射的神经生物素逆行标记的颗粒细胞的分布。62%的标记颗粒细胞位于注射部位两侧400微米矢状带之外。标记颗粒细胞沿宽2.7 - 2.9毫米的小叶轴的分散约为2.5毫米。我们的数据表明,SSs的拓扑特异性不能归因于前庭初级传入苔藓纤维-颗粒细胞投射的拓扑结构。相反,SSs的反应特异性必须归因于与攀缘纤维诱发的浦肯野细胞和中间神经元活动相关的其他机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验