Morton Kenneth D, Torrione Peter A, Throckmorton Chandra S, Collins Leslie M
Duke University Department of Electrical and Computer Engineering, Box 90291, Durham, NC 27708-0291, USA.
Hear Res. 2008 Oct;244(1-2):66-76. doi: 10.1016/j.heares.2008.07.008. Epub 2008 Jul 31.
It has been established that current cochlear implants do not supply adequate spectral information for perception of tonal languages. Comprehension of a tonal language, such as Mandarin Chinese, requires recognition of lexical tones. New strategies of cochlear stimulation such as variable stimulation rate and current steering may provide the means of delivering more spectral information and thus may provide the auditory fine-structure required for tone recognition. Several cochlear implant signal processing strategies are examined in this study, the continuous interleaved sampling (CIS) algorithm, the frequency amplitude modulation encoding (FAME) algorithm, and the multiple carrier frequency algorithm (MCFA). These strategies provide different types and amounts of spectral information. Pattern recognition techniques can be applied to data from Mandarin Chinese tone recognition tasks using acoustic models as a means of testing the abilities of these algorithms to transmit the changes in fundamental frequency indicative of the four lexical tones. The ability of processed Mandarin Chinese tones to be correctly classified may predict trends in the effectiveness of different signal processing algorithms in cochlear implants. The proposed techniques can predict trends in performance of the signal processing techniques in quiet conditions but fail to do so in noise.
目前已经确定,现有的人工耳蜗无法提供足够的频谱信息以用于声调语言的感知。对于像汉语普通话这样的声调语言,其理解需要识别词汇声调。诸如可变刺激率和电流转向等新的人工耳蜗刺激策略可能提供传递更多频谱信息的方法,从而可能提供声调识别所需的听觉精细结构。本研究考察了几种人工耳蜗信号处理策略,即连续交错采样(CIS)算法、频率幅度调制编码(FAME)算法和多载波频率算法(MCFA)。这些策略提供不同类型和数量的频谱信息。模式识别技术可应用于来自汉语普通话声调识别任务的数据,使用声学模型作为测试这些算法传递表示四个词汇声调的基频变化能力的一种手段。经处理的汉语普通话声调被正确分类的能力可以预测不同信号处理算法在人工耳蜗中的有效性趋势。所提出的技术可以预测信号处理技术在安静条件下的性能趋势,但在噪声环境中则无法做到。