Suppr超能文献

A new dimensionless number highlighted from mechanical energy exchange during running.

作者信息

Delattre Nicolas, Moretto Pierre

机构信息

Laboratoire d'Etudes de la Motricité Humaine, Faculté des Sciences du Sport et de l'Education Physique, Université de Lille 2, 9, rue de l'Université, 59790 Ronchin, France.

出版信息

J Biomech. 2008 Sep 18;41(13):2895-8. doi: 10.1016/j.jbiomech.2008.06.034. Epub 2008 Aug 15.

Abstract

This study aimed to highlight a new dimensionless number from mechanical energy transfer occurring at the centre of gravity (Cg) during running. We built two different-sized spring-mass models (SMM #1 and SMM #2). SMM #1 was built from the previously published data, and SMM #2 was built to be dynamically similar to SMM #1. The potential gravitational energy (E(P)), kinetic energy (E(K)), and potential elastic energy (E(E)) were taken into account to test our hypothesis. For both SMM #1 and SMM #2, N(Mo-Dela)=(E(P)+E(K))/E(E) reached the same mean value and was constant (4.1+/-0.7) between 30% and 70% of contact time. Values of N(Mo-Dela) obtained out of this time interval were due to the absence of E(E) at initial and final times of the simulation. This phenomenon does not occur during in vivo running because a leg muscle's pre-activation enables potential elastic energy storage prior to ground contact. Our findings also revealed that two different-sized spring-mass models bouncing with equal N(Mo-Dela) values moved in a dynamically similar fashion. N(Mo-Dela), which can be expressed by the combination of Strouhal and Froude numbers, could be of great interest in order to study animal and human locomotion under Earth's gravity or to induce dynamic similarity between different-sized individuals during bouncing gaits.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验