Suppr超能文献

Effects of locus coeruleus lesions on parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: a possible role for the locus coeruleus in the progression of Parkinson's disease.

作者信息

Mavridis M, Degryse A D, Lategan A J, Marien M R, Colpaert F C

机构信息

Neurobiology Division, FONDAX-Groupe de Recherche SERVIER, Puteaux, France.

出版信息

Neuroscience. 1991;41(2-3):507-23. doi: 10.1016/0306-4522(91)90345-o.

Abstract

Six pairs of female squirrel monkeys were given a daily intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 9-14 days, beginning the same day on which they received either a bilateral 6-hydroxydopamine lesion or a sham lesion of the locus coeruleus. Sham animals developed typical parkinsonian signs (i.e. tremor, bradykinesia, hypokinesia and reduced blink rate) which largely recovered by six to nine weeks after the start of MPTP treatment. At nine weeks, post mortem levels of striatal dopamine in these same animals were partially reduced (by 45%), and this only in the putamen, compared to values obtained from three non-operated, normal control animals. Additionally, histological examination revealed a moderate loss of neuronal cell bodies in the substantia nigra, pars compacta. In marked contrast, the locus coeruleus-lesioned monkeys exhibited little or no recovery from the parkinsonian signs induced by MPTP. Post mortem examination of these animals revealed profound decreases in caudate (by 84%) and putamen (by 91%) dopamine content, and severe neuronal cell loss in the substantia nigra pars compacta of all animals. These neurological, biochemical and histological assessments indicate that lesioning of the locus coeruleus impairs the recovery which usually occurs from the parkinsonian manifestations induced by MPTP in squirrel monkeys. The results support the hypothesis that deficient locus coeruleus noradrenergic mechanisms underlie the progression of Parkinson's disease.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验