Nunney Leonard
Department of Biology and Center for Conservation Biology, University of California, Riverside, California 92521, USA.
Am Nat. 2002 Aug;160(2):195-204. doi: 10.1086/341017.
Many annual plant populations undergo dramatic fluctuations in size. Such fluctuations can result in the loss of genetic variability. Here I formalize the potential for a seed bank to buffer against such genetic loss. The average time to seed germination (T) defines the generation time of "annuals" with a seed bank, and assuming random seed germination, I show that, under otherwise ideal conditions, a population's effective size (Ne) equals NT, where N is the number of adult plants. This result supports the general principle that lengthening the prereproductive period increases Ne. When adult numbers vary, Ne at any time depends on N and on the numbers contributing to the seed bank in previous seasons. Averaging these effects over time gives Ne approximately Nh + (T - 1)Na, where Nh and Na are the harmonic and arithmetic means of the adult population. Thus if T >> 1, Ne is determined primarily by Na. Simulations showed that until fluctuations in N are large (>25x) this relationship is accurate. I extended the theory to incorporate a selfing rate (S) and reproductive variance (I) through seed production (k), outcrossed pollen (m), and variation in selfing rate: Ne = NT(1 -S/2)/(1 + I) = NT/[1 + FIS)(1 + I)]. Reproductive variance (I) equals [Ik(1 + S)2 + IM(1 - S)2 + 2(1 - S2)Ikm = S2IS(1 + Ik)]/4, , where Ij is the standardized variance (Vj/j2) of factor j and Ikm is the standardized covariance between k and m. These results are applicable to other organisms with a similar life history, such as freshwater crustaceans with diapausing eggs (e.g., tadpole shrimp, clam shrimp, and fairy shrimp) and other semelparous species with discrete breeding seasons and a variable maturation time (e.g., Pacific salmon).
许多一年生植物种群的规模会经历剧烈波动。这种波动可能导致遗传变异性的丧失。在此,我将种子库缓冲此类遗传损失的潜力进行了形式化。种子萌发的平均时间(T)定义了具有种子库的“一年生植物”的世代时间,并且假设种子随机萌发,我表明,在其他条件理想的情况下,种群的有效大小(Ne)等于NT,其中N是成年植株的数量。这一结果支持了延长繁殖前期会增加Ne的一般原则。当成体数量变化时,任何时候的Ne取决于N以及前几个季节进入种子库的数量。随着时间对这些影响进行平均,得到Ne约为Nh + (T - 1)Na,其中Nh和Na分别是成年种群的调和平均数和算术平均数。因此,如果T >> 1,Ne主要由Na决定。模拟表明,直到N的波动很大(>25倍)时,这种关系都是准确的。我扩展了该理论,通过种子产量(k)、异交花粉(m)和自交率的变化纳入了自交率(S)和繁殖方差(I):Ne = NT(1 - S/2)/(1 + I) = NT/[1 + FIS)(1 + I)]。繁殖方差(I)等于[Ik(1 + S)2 + IM(1 - S)2 + 2(1 - S2)Ikm = S2IS(1 + Ik)]/4,其中Ij是因子j的标准化方差(Vj/j2),Ikm是k和m之间的标准化协方差。这些结果适用于具有类似生活史的其他生物,例如具有滞育卵的淡水甲壳类动物(如鲎虫、蚌虾和仙女虾)以及其他具有离散繁殖季节和可变成熟时间的单次生殖物种(如太平洋鲑鱼)。