Suppr超能文献

复制叉移动决定了哺乳动物细胞中染色质环的大小和起始点选择。

Replication fork movement sets chromatin loop size and origin choice in mammalian cells.

作者信息

Courbet Sylvain, Gay Sophie, Arnoult Nausica, Wronka Gerd, Anglana Mauro, Brison Olivier, Debatisse Michelle

机构信息

Institut Curie, 26 rue d'Ulm, 75248 Paris, France; UPMC Univ. Paris 06, F-75005 Paris, France.

出版信息

Nature. 2008 Sep 25;455(7212):557-60. doi: 10.1038/nature07233. Epub 2008 Aug 17.

Abstract

Genome stability requires one, and only one, DNA duplication at each S phase. The mechanisms preventing origin firing on newly replicated DNA are well documented, but much less is known about the mechanisms controlling the spacing of initiation events(2,3), namely the completion of DNA replication. Here we show that origin use in Chinese hamster cells depends on both the movement of the replication forks and the organization of chromatin loops. We found that slowing the replication speed triggers the recruitment of latent origins within minutes, allowing the completion of S phase in a timely fashion. When slowly replicating cells are shifted to conditions of fast fork progression, although the decrease in the overall number of active origins occurs within 2 h, the cells still have to go through a complete cell cycle before the efficiency specific to each origin is restored. We observed a strict correlation between replication speed during a given S phase and the size of chromatin loops in the next G1 phase. Furthermore, we found that origins located at or near sites of anchorage of chromatin loops in G1 are activated preferentially in the following S phase. These data suggest a mechanism of origin programming in which replication speed determines the spacing of anchorage regions of chromatin loops, that, in turn, controls the choice of initiation sites.

摘要

基因组稳定性要求在每个S期进行一次且仅一次DNA复制。防止新复制的DNA上的起始点激发的机制已有充分记载,但对于控制起始事件间隔(即DNA复制的完成)的机制却知之甚少。在这里,我们表明中国仓鼠细胞中起始点的使用既取决于复制叉的移动,也取决于染色质环的组织。我们发现,减慢复制速度会在数分钟内触发潜在起始点的募集,从而使S期能够及时完成。当缓慢复制的细胞转移到快速叉进展的条件下时,尽管活跃起始点的总数在2小时内减少,但细胞仍必须经历完整的细胞周期,才能恢复每个起始点特有的效率。我们观察到给定S期的复制速度与下一个G1期染色质环的大小之间存在严格的相关性。此外,我们发现位于G1期染色质环锚定位点或其附近的起始点在下一个S期优先被激活。这些数据表明了一种起始点编程机制,其中复制速度决定了染色质环锚定区域的间隔,进而控制起始位点的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验