Santelia Diana, Henrichs Sina, Vincenzetti Vincent, Sauer Michael, Bigler Laurent, Klein Markus, Bailly Aurélien, Lee Youngsook, Friml Jirí, Geisler Markus, Martinoia Enrico
Laboratory of Molecular Plant Physiology, Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland.
J Biol Chem. 2008 Nov 7;283(45):31218-26. doi: 10.1074/jbc.M710122200. Epub 2008 Aug 21.
The rate, polarity, and symmetry of the flow of the plant hormone auxin are determined by the polar cellular localization of PIN-FORMED (PIN) auxin efflux carriers. Flavonoids, a class of secondary plant metabolites, have been suspected to modulate auxin transport and tropic responses. Nevertheless, the identity of specific flavonoid compounds involved and their molecular function and targets in vivo are essentially unknown. Here we show that the root elongation zone of agravitropic pin2/eir1/wav6/agr1 has an altered pattern and amount of flavonol glycosides. Application of nanomolar concentrations of flavonols to pin2 roots is sufficient to partially restore root gravitropism. By employing a quantitative cell biological approach, we demonstrate that flavonoids partially restore the formation of lateral auxin gradients in the absence of PIN2. Chemical complementation by flavonoids correlates with an asymmetric distribution of the PIN1 protein. pin2 complementation probably does not result from inhibition of auxin efflux, as supply of the auxin transport inhibitor N-1-naphthylphthalamic acid failed to restore pin2 gravitropism. We propose that flavonoids promote asymmetric PIN shifts during gravity stimulation, thus redirecting basipetal auxin streams necessary for root bending.
植物激素生长素流动的速率、极性和对称性由PIN形成(PIN)生长素流出载体的极性细胞定位决定。类黄酮是一类植物次生代谢产物,人们怀疑它们可调节生长素运输和向性反应。然而,所涉及的特定类黄酮化合物的身份及其在体内的分子功能和靶点基本上仍不清楚。在这里,我们表明,向重力性缺失的pin2/eir1/wav6/agr1突变体的根伸长区具有改变的黄酮醇苷模式和含量。将纳摩尔浓度的黄酮醇应用于pin2突变体根足以部分恢复根的向重力性。通过采用定量细胞生物学方法,我们证明在没有PIN2的情况下,类黄酮部分恢复了生长素侧向梯度的形成。类黄酮的化学互补与PIN1蛋白的不对称分布相关。pin2突变体的互补可能不是由于生长素流出的抑制,因为生长素运输抑制剂N-1-萘基邻苯二甲酸未能恢复pin2突变体的向重力性。我们提出,类黄酮在重力刺激期间促进PIN的不对称移位,从而重新引导根弯曲所需的向基生长素流。