Suppr超能文献

一种用于精神药理学药物体内分类的数据挖掘方法。

A data mining approach to in vivo classification of psychopharmacological drugs.

作者信息

Kafkafi Neri, Yekutieli Daniel, Elmer Greg I

机构信息

Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA.

出版信息

Neuropsychopharmacology. 2009 Feb;34(3):607-23. doi: 10.1038/npp.2008.103. Epub 2008 Aug 20.

Abstract

Data mining is a powerful bioinformatics strategy that has been successfully applied in vitro to screen for gene-expression profiles predicting toxicological or carcinogenic response ('class predictors'). In this report we used a data mining algorithm named Pattern Array (PA) in vivo to analyze mouse open-field behavior and characterize the psychopharmacological effects of three drug classes--psychomotor stimulant, opioid, and psychotomimetic. PA represents rodent movement with approximately 100,000 complex patterns, defined as multiple combinations of several ethologically relevant variables, and mines them for those that maximize any effect of interest, such as the difference between drug classes. We show that PA can discover behavioral predictors of all three drug classes, thus developing a reliable drug-classification scheme in small group sizes. The discovered predictors showed orderly dose dependency despite being explicitly mined only for class differences, with the high doses scoring 4-10 standard deviations from the vehicle group. Furthermore, these predictors correctly classified in a dose-dependent manner four 'unknown' drugs (ie that were not used in the training process), and scored a mixture of a psychomotor stimulant and an opioid as being intermediate between these two classes. The isolated behaviors were highly heritable (h(2)>50%) and replicable as determined in 10 inbred strains across three laboratories. PA can in principle be applied for mining behaviors predicting additional properties, such as within-class differences between drugs and within-drug dose-response, all of which can be measured automatically in a single session per animal in an open-field arena, suggesting a high potential as a tool in psychotherapeutic drug discovery.

摘要

数据挖掘是一种强大的生物信息学策略,已成功应用于体外筛选预测毒理学或致癌反应的基因表达谱(“类别预测因子”)。在本报告中,我们在体内使用一种名为模式阵列(PA)的数据挖掘算法来分析小鼠旷场行为,并表征三类药物——精神运动兴奋剂、阿片类药物和拟精神病药物的精神药理学效应。PA用大约100,000种复杂模式来表示啮齿动物的运动,这些模式被定义为几个行为学相关变量的多种组合,并挖掘这些模式以找出能使任何感兴趣的效应最大化的模式,比如药物类别之间的差异。我们表明PA可以发现所有三类药物的行为预测因子,从而在小样本量中开发出可靠的药物分类方案。尽管仅明确挖掘类别差异,但发现的预测因子显示出有序的剂量依赖性,高剂量组与溶剂对照组的得分相差4 - 10个标准差。此外,这些预测因子以剂量依赖的方式正确分类了四种“未知”药物(即在训练过程中未使用的药物),并将一种精神运动兴奋剂和一种阿片类药物的混合物评为介于这两类之间。分离出的行为具有高度遗传性(h(2)>50%),并且在三个实验室的10个近交系中得到了验证。原则上,PA可用于挖掘预测其他特性的行为,比如药物类别内差异和药物剂量反应,所有这些都可以在旷场实验中每只动物单次实验时自动测量,这表明PA作为心理治疗药物发现工具具有很高的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验