Touboul David, Bouchoux Guy, Zenobi Renato
Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland.
J Phys Chem B. 2008 Sep 18;112(37):11716-25. doi: 10.1021/jp804786e. Epub 2008 Aug 23.
The goal of this work was to obtain a detailed insight on the gas-phase protonation energetic of adenosine using both mass spectrometric experiments and quantum chemical calculations. The experimental approach used the extended kinetic method with nanoelectrospray ionization and collision-induced dissociation tandem mass spectrometry. This method provides experimental values for proton affinity, PA(adenosine) = 979 +/- 1 kJ.mol (-1), and for the "protonation entropy", Delta p S degrees (adenosine) = S degrees (adenosineH +) - S degrees (adenosine) = -5 +/- 5 J.mol (-1).K (-1). The corresponding gas-phase basicity is consequently equal to: GB(adenosine) = 945 +/- 2 kJ.mol (-1) at 298K. Theoretical calculations conducted at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) level, including 298 K enthalpy correction, predict a proton affinity value of 974 kJ.mol (-1) after consideration of isodesmic proton transfer reactions with pyridine as the reference base. Moreover, computations clearly showed that N3 is the most favorable protonation site for adenosine, due to a strong internal hydrogen bond involving the hydroxyl group at the 2' position of the ribose sugar moiety, unlike observations for adenine and 2'-deoxyadenosine, where protonation occurs on N1. The existence of negligible protonation entropy is confirmed by calculations (theoretical Delta p S degrees (adenosine) approximately -2/-3 J.mol (-1).K (-1)) including conformational analysis and entropy of hindered rotations. Thus, the calculated protonation thermochemical properties are in good agreement with our experimental measurements. It may be noted that the new PA value is approximately 10 kJ.mol (-1) lower than the one reported in the National Institute of Standards and Technology (NIST) database, thus pointing to a correction of the tabulated protonation thermochemistry of adenosine.
这项工作的目标是通过质谱实验和量子化学计算,深入了解腺苷的气相质子化能量。实验方法采用了扩展动力学方法,结合纳米电喷雾电离和碰撞诱导解离串联质谱。该方法提供了质子亲和能的实验值,PA(腺苷)=979±1kJ·mol⁻¹,以及“质子化熵”,ΔpS°(腺苷)=S°(腺苷H⁺)-S°(腺苷)=-5±5J·mol⁻¹·K⁻¹。因此,在298K时,相应的气相碱度等于:GB(腺苷)=945±2kJ·mol⁻¹。在B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p)水平进行的理论计算,包括298K焓校正,以吡啶作为参考碱,考虑等键质子转移反应后,预测质子亲和能值为974kJ·mol⁻¹。此外,计算清楚地表明,N3是腺苷最有利的质子化位点;这是由于核糖糖部分2'位的羟基形成了强烈的分子内氢键,这与腺嘌呤和2'-脱氧腺苷不同,后者的质子化发生在N1上。计算(理论ΔpS°(腺苷)约为-2/-3J·mol⁻¹·K⁻¹)包括构象分析和受阻旋转熵,证实了质子化熵可忽略不计。因此,计算得到的质子化热化学性质与我们的实验测量结果吻合良好。需要注意的是,新的PA值比美国国家标准与技术研究院(NIST)数据库中报告的值低约10kJ·mol⁻¹,从而表明需要对腺苷的质子化热化学表格进行校正。