Chen Can-Yu, Zhou Zhao-Hui, Chen Hong-Bin, Huang Pei-Qiang, Tsai Khi-Rui, Chow Yuan L
State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
Inorg Chem. 2008 Oct 6;47(19):8714-20. doi: 10.1021/ic800553p. Epub 2008 Aug 23.
Dimeric mixed-valence oxovanadium citrate [V 2O 3(phen) 3(Hcit)].5H 2O ( 1) (H 4cit = citric acid, phen = 1,10-phenanthroline) was isolated from a weak acidic medium. It could be converted quantitatively into a tetrameric oxovanadium citrate adduct of 1,10-phenanthroline [V 2O 3(phen) 3(Hcit) 2(phen) 3O 3V 2].12H 2O ( 2). This was supported by the trace of infrared spectra and X-ray diffraction patterns. The two compounds feature a bidentate citrate group that chelates only to one vanadium center through their negatively charged alpha-alkoxy and alpha-carboxy oxygen atoms, while the other beta-carboxy and beta-carboxylic acid groups are free to participate in strong intramolecular and intermolecular hydrogen bonding [2.45(1) in 1 and 2.487(2) A in 2], respectively. This is also the case of homocitrato vanadate(V/IV) [V 2O 3(phen) 3( R, S-H 2homocit)]Cl.6H 2O ( 3) (H 4homocit = homocitric acid), which features a binding mode similar to that found in the R-homocitrato iron molybdenum cofactor of Mo-nitrogenase. Moreover, the homocitrato vanadate(V) [VO 2(phen) 2] 2[V 2O 4( R,S-H 2homocit) 2].4H 2O.2C 2H 5OH ( 4) is isolated as a molecular precursor for the formation of mixed-valence complex 3. The V-O alpha-alkoxy and V-O alpha-carboxy bond distances of homocitrate complexes 3 and 4 are 1.858(4) and 1.968(6) av and 2.085(4) and 1.937(5) A, respectively. They are shorter than those of homocitrate to FeVco (2.15 A). The gamma-carboxy groups of coordinated homocitrato complexes 3 and 4, and the free homocitrate salt Na 3(Hhomocit).H 2O ( 5), form strong hydrogen bonds with the chloride ion and the water molecule [2.982(5) in 3, 2.562(9) in 4, and 2.763(1) A in 5], respectively.
二聚体混合价态氧钒柠檬酸盐[V₂O₃(phen)₃(Hcit)].5H₂O (1)(H₄cit = 柠檬酸,phen = 1,10 - 菲咯啉)是从弱酸性介质中分离得到的。它可以定量转化为1,10 - 菲咯啉的四聚体氧钒柠檬酸盐加合物[V₂O₃(phen)₃(Hcit)₂(phen)₃O₃V₂].12H₂O (2)。这得到了红外光谱和X射线衍射图谱的佐证。这两种化合物的特征是一个双齿柠檬酸盐基团,它仅通过其带负电荷的α - 烷氧基和α - 羧基氧原子螯合到一个钒中心,而其他β - 羧基和β - 羧酸基团则分别自由地参与强分子内和分子间氢键作用(1中为2.45(1) Å,2中为2.487(2) Å)。同柠檬酸钒(V/IV)[V₂O₃(phen)₃(R,S - H₂homocit)]Cl.6H₂O (3)(H₄homocit = 同柠檬酸)也是如此,其结合模式与钼固氮酶的R - 同柠檬酸铁钼辅因子中发现的模式相似。此外,同柠檬酸钒(V)[VO₂(phen)₂]₂[V₂O₄(R,S - H₂homocit)₂].4H₂O.2C₂H₅OH (4)被分离出来作为形成混合价态配合物3的分子前体。同柠檬酸配合物3和4的V - O α - 烷氧基和V - O α - 羧基键长分别为1.858(4)和1.968(6) Å以及2.085(4)和1.937(5) Å。它们比同柠檬酸与FeVco的键长(2.15 Å)短。配位的同柠檬酸配合物3和4的γ - 羧基基团以及游离的同柠檬酸盐Na₃(Hhomocit).H₂O (5)分别与氯离子和水分子形成强氢键(3中为2.982(5) Å,4中为2.562(9) Å,5中为2.763(1) Å)。