State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China.
Department of Chemistry , University of California , Davis , California 95616 , United States.
Inorg Chem. 2019 Feb 18;58(4):2523-2532. doi: 10.1021/acs.inorgchem.8b03108. Epub 2019 Feb 6.
A similar pair of protonated and deprotonated mononuclear oxidovanadium glycolates [VO(Hglyc)(phen)(HO)]Cl·2HO (1) and [VO(glyc)(bpy)(HO)] (2) and a mixed-(de)protonated oxidovanadium triglycolate (NH)[VO(Hglyc)(glyc)]·HO (3) were isolated and examined. The ≡C-O(H) (≡C-OH or ≡C-O) groups coordinated to vanadium were spectroscopically and structurally identified. The glycolate in 1 features a bidentate chelation through protonated α-hydroxy and α-carboxy groups, whereas the glycolate in 2 coordinates through deprotonated α-alkoxy and α-carboxy groups. The glycolates in 3 coordinate to vanadium through α-alkoxy or α-hydroxy and α-carboxy groups and thus have both protonated ≡C-OH and deprotonated ≡C-O bonds simultaneously. Structural investigations revealed that the longer protonated V-O bonds [2.234(2) Å and 2.244(2) Å] in 1 and 3 are close to those of FeV-cofactor (FeV-co) 2.17 Å (FeMo-co 2.17 Å), while deprotonated V-O bonds [2, 1.930(2); 3, 1.927(2) Å] were obviously shorter. This shows a similar elongated trend as the Mo-O distances in the previously reported deprotonated vs protonated molybdenum lactates (Wang, S. Y. et al. Dalton Trans. 2018, 47, 7412-7421) and these vanadium and molybdenum complexes have the same local V/Mo-homocitrate structures as those of FeV/Mo-cos of nitrogenases. The IR spectra of these oxidovanadium and the previously synthesized molybdenum complexes including different substituted ≡C-O(H) model compounds show red-shifts for ≡C-OH vs ≡C-O alternation, which further assign the two IR bands of extracted FeMo-co at 1084 and 1031 cm to ≡C-O and ≡C-OH vibrations, respectively. Although the structural data or IR spectra for some of the previously synthesized Mo/V complexes and extracted FeMo-co were measured earlier, this is the first time that the ≡C-O(H) coordinated peaks are assigned. The overall structural and IR results well suggest the coexistence of homocitrates coordinated with α-alkoxy (deprotonated) and α-hydroxy (protonated) groups in the extracted FeMo-co.
分离并考察了类似的一对质子化和去质子化单核氧化钒乙二醇酸盐[VO(Hglyc)(phen)(HO)]Cl·2HO(1)和[VO(glyc)(bpy)(HO)](2)以及混合-(去)质子化氧化钒三乙二醇酸盐(NH)[VO(Hglyc)(glyc)]·HO(3)。通过光谱和结构鉴定,确定了与钒配位的≡C-O(H)(≡C-OH 或≡C-O)基团。1 中的乙二醇通过质子化的α-羟基和α-羧基形成双齿螯合,而 2 中的乙二醇通过去质子化的α-烷氧基和α-羧基配位。3 中的乙二醇通过α-烷氧基或α-羟基和α-羧基与钒配位,因此同时具有质子化的≡C-OH 和去质子化的≡C-O 键。结构研究表明,1 和 3 中较长的质子化 V-O 键[2.234(2)Å 和 2.244(2)Å]接近 FeV-辅酶(FeV-co)的 2.17Å(FeMo-co 的 2.17Å),而去质子化的 V-O 键[2,1.930(2);3,1.927(2)Å]明显更短。这表明与先前报道的去质子化和质子化钼乳酸盐中的 Mo-O 距离(Wang,S.Y.等人,Dalton Trans. 2018,47,7412-7421)相似,这些钒和钼配合物具有与氮酶中的 FeV/Mo-同型柠檬酸相同的局部 V/Mo-同型柠檬酸结构。这些氧化钒和先前合成的钼配合物的红外光谱(包括不同取代的≡C-O(H)模型化合物)显示出≡C-OH 与≡C-O 交替的红移,这进一步将提取的 FeMo-co 的两个红外带分别分配到 1084 和 1031cm 处的≡C-O 和≡C-OH 振动。尽管先前合成的 Mo/V 配合物和提取的 FeMo-co 的一些结构数据或红外光谱早些时候已经测量过,但这是第一次分配≡C-O(H)配位峰。总体结构和红外结果很好地表明,提取的 FeMo-co 中同时存在与α-烷氧基(去质子化)和α-羟基(质子化)配位的同型柠檬酸。