Suppr超能文献

保守的中央结构域控制着I型和II型Hsp40分子伴侣的四级结构。

Conserved central domains control the quaternary structure of type I and type II Hsp40 molecular chaperones.

作者信息

Ramos Carlos H I, Oliveira Cristiano L P, Fan Chung-Yang, Torriani Iris L, Cyr Douglas M

机构信息

Department of Organic Chemistry, Institute of Chemistry, University of Campinas-UNICAMP, Campinas, SP 13083-970, Brazil.

出版信息

J Mol Biol. 2008 Oct 31;383(1):155-66. doi: 10.1016/j.jmb.2008.08.019. Epub 2008 Aug 14.

Abstract

Heat shock protein (Hsp)40s play an essential role in protein metabolism by regulating the polypeptide binding and release cycle of Hsp70. The Hsp40 family is large, and specialized family members direct Hsp70 to perform highly specific tasks. Type I and Type II Hsp40s, such as yeast Ydj1 and Sis1, are homodimers that dictate functions of cytosolic Hsp70, but how they do so is unclear. Type I Hsp40s contain a conserved, centrally located cysteine-rich domain that is replaced by a glycine- and methionine-rich region in Type II Hsp40s, but the mechanism by which these unique domains influence Hsp40 structure and function is unknown. This is the case because high-resolution structures of full-length forms of these Hsp40s have not been solved. To fill this void, we built low-resolution models of the quaternary structure of Ydj1 and Sis1 with information obtained from biophysical measurements of protein shape, small-angle X-ray scattering, and ab initio protein modeling. Low-resolution models were also calculated for the chimeric Hsp40s YSY and SYS, in which the central domains of Ydj1 and Sis1 were exchanged. Similar to their human homologs, Ydj1 and Sis1 each has a unique shape with major structural differences apparently being the orientation of the J domains relative to the long axis of the dimers. Central domain swapping in YSY and SYS correlates with the switched ability of YSY and SYS to perform unique functions of Sis1 and Ydj1, respectively. Models for the mechanism by which the conserved cysteine-rich domain and glycine- and methionine-rich region confer structural and functional specificity to Type I and Type II Hsp40s are discussed.

摘要

热休克蛋白(Hsp)40通过调节Hsp70的多肽结合和释放循环在蛋白质代谢中发挥重要作用。Hsp40家族庞大,特定的家族成员指导Hsp70执行高度特异性的任务。I型和II型Hsp40,如酵母Ydj1和Sis1,是同型二聚体,决定胞质Hsp70的功能,但它们如何做到这一点尚不清楚。I型Hsp40包含一个保守的、位于中央的富含半胱氨酸的结构域,在II型Hsp40中被一个富含甘氨酸和甲硫氨酸的区域取代,但这些独特结构域影响Hsp40结构和功能的机制尚不清楚。之所以如此,是因为这些Hsp40全长形式的高分辨率结构尚未解析。为了填补这一空白,我们利用从蛋白质形状的生物物理测量、小角X射线散射和从头蛋白质建模获得的信息,构建了Ydj1和Sis1四级结构的低分辨率模型。还计算了嵌合Hsp40 YSY和SYS的低分辨率模型,其中Ydj1和Sis1的中央结构域进行了交换。与它们的人类同源物相似,Ydj1和Sis1各自具有独特的形状,主要结构差异显然是J结构域相对于二聚体长轴的方向。YSY和SYS中的中央结构域交换分别与YSY和SYS执行Sis1和Ydj1独特功能的转换能力相关。本文讨论了保守的富含半胱氨酸结构域以及富含甘氨酸和甲硫氨酸区域赋予I型和II型Hsp40结构和功能特异性的机制模型。

相似文献

1
Conserved central domains control the quaternary structure of type I and type II Hsp40 molecular chaperones.
J Mol Biol. 2008 Oct 31;383(1):155-66. doi: 10.1016/j.jmb.2008.08.019. Epub 2008 Aug 14.
3
The glycine-phenylalanine-rich region determines the specificity of the yeast Hsp40 Sis1.
Mol Cell Biol. 1999 Nov;19(11):7751-8. doi: 10.1128/MCB.19.11.7751.
4
Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function.
Mol Biol Cell. 2004 Feb;15(2):761-73. doi: 10.1091/mbc.e03-03-0146. Epub 2003 Dec 2.
6
Specificity of class II Hsp40 Sis1 in maintenance of yeast prion [RNQ+].
Mol Biol Cell. 2003 Mar;14(3):1172-81. doi: 10.1091/mbc.e02-09-0593.
8
Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1.
J Mol Biol. 2015 Apr 10;427(7):1632-43. doi: 10.1016/j.jmb.2015.02.007. Epub 2015 Feb 14.
9
Identification of essential residues in the type II Hsp40 Sis1 that function in polypeptide binding.
J Biol Chem. 2002 Jun 14;277(24):21675-82. doi: 10.1074/jbc.M111075200. Epub 2002 Mar 27.
10
Hsp40s specify functions of Hsp104 and Hsp90 protein chaperone machines.
PLoS Genet. 2014 Oct 16;10(10):e1004720. doi: 10.1371/journal.pgen.1004720. eCollection 2014 Oct.

引用本文的文献

1
NMR Studies on the Structure of Yeast Sis1 and the Dynamics of Its Interaction with Ssa1-EEVD.
Molecules. 2024 Dec 24;30(1):11. doi: 10.3390/molecules30010011.
2
Type I Hsp40s/DnaJs aggregates exhibit features reminiscent of amyloidogenic structures.
FEBS J. 2024 Sep;291(17):3904-3923. doi: 10.1111/febs.17215. Epub 2024 Jul 8.
3
Fungal heat shock proteins: molecular phylogenetic insights into the host takeover.
Naturwissenschaften. 2024 Mar 14;111(2):16. doi: 10.1007/s00114-024-01903-x.
4
Hidden information on protein function in censuses of proteome foldedness.
Nat Commun. 2022 Apr 14;13(1):1992. doi: 10.1038/s41467-022-29661-2.
6
Nematode CDC-37 and DNJ-13 form complexes and can interact with HSP-90.
Sci Rep. 2021 Nov 1;11(1):21346. doi: 10.1038/s41598-021-00885-4.
7
Client processing is altered by novel myopathy-causing mutations in the HSP40 J domain.
PLoS One. 2020 Jun 4;15(6):e0234207. doi: 10.1371/journal.pone.0234207. eCollection 2020.
8
Structural and functional analysis of the Hsp70/Hsp40 chaperone system.
Protein Sci. 2020 Feb;29(2):378-390. doi: 10.1002/pro.3725. Epub 2019 Oct 7.

本文引用的文献

1
, a program for rapid shape determination in small-angle scattering.
J Appl Crystallogr. 2009 Apr 1;42(Pt 2):342-346. doi: 10.1107/S0021889809000338. Epub 2009 Jan 24.
2
A spectroscopic-based laboratory experiment for protein conformational studies*.
Biochem Mol Biol Educ. 2004 Jan;32(1):31-4. doi: 10.1002/bmb.2004.494032010309.
4
In vivo modulation of a DnaJ homolog, CbpA, by CbpM.
J Bacteriol. 2007 May;189(9):3635-8. doi: 10.1128/JB.01757-06. Epub 2007 Mar 2.
5
Hsp40 interacts directly with the native state of the yeast prion protein Ure2 and inhibits formation of amyloid-like fibrils.
J Biol Chem. 2007 Apr 20;282(16):11931-40. doi: 10.1074/jbc.M606856200. Epub 2007 Feb 26.
6
Translocation of proteins into mitochondria.
Annu Rev Biochem. 2007;76:723-49. doi: 10.1146/annurev.biochem.76.052705.163409.
7
Low resolution structure and stability studies of human GrpE#2, a mitochondrial nucleotide exchange factor.
Arch Biochem Biophys. 2006 May 15;449(1-2):77-86. doi: 10.1016/j.abb.2006.02.015. Epub 2006 Mar 9.
8
Role of Pam16's degenerate J domain in protein import across the mitochondrial inner membrane.
Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12419-24. doi: 10.1073/pnas.0505969102. Epub 2005 Aug 16.
9
Global rigid body modeling of macromolecular complexes against small-angle scattering data.
Biophys J. 2005 Aug;89(2):1237-50. doi: 10.1529/biophysj.105.064154. Epub 2005 May 27.
10
Protein folding assisted by chaperones.
Protein Pept Lett. 2005 Apr;12(3):257-61. doi: 10.2174/0929866053587165.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验