Chakauya Ereck, Coxon Katy M, Wei Ma, Macdonald Mary V, Barsby Tina, Abell Chris, Smith Alison G
Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
Plant Mol Biol. 2008 Nov;68(4-5):493-503. doi: 10.1007/s11103-008-9386-5. Epub 2008 Aug 23.
Pantothenate (vitamin B(5)) is the precursor of the 4'-phosphopantetheine moiety of coenzyme A and acyl-carrier protein. It is made by plants and microorganisms de novo, but is a dietary requirement for animals. The pantothenate biosynthetic pathway is well-established in bacteria, comprising four enzymic reactions catalysed by ketopantoate hydroxymethyltransferase (KPHMT), L: -aspartate-alpha-decarboxylase (ADC), pantothenate synthetase (PS) and ketopantoate reductase (KPR) encoded by panB, panD, panC and panE genes, respectively. In higher plants, the genes encoding the first (KPHMT) and last (PS) enzymes have been identified and characterised in several plant species. Commercially, pantothenate is chemically synthesised and used in vitamin supplements, feed additives and cosmetics. Biotransformation is an attractive alternative production system that would circumvent the expensive procedures of separating racemic intermediates. We explored the possibility of manipulating pantothenate biosynthesis in plants. Transgenic oilseed rape (Brassica napus) lines were generated in which the E. coli KPHMT and PS genes were expressed under a strong constitutive CaMV35SS promoter. No significant change of pantothenate levels in PS transgenic lines was observed. In contrast plants expressing KPHMT had elevated pantothenate levels in leaves, flowers siliques and seed in the range of 1.5-2.5 fold increase compared to the wild type plant. Seeds contained the highest vitamin content, indicating that they might be the ideal target for production purposes.
泛酸盐(维生素B5)是辅酶A和酰基载体蛋白中4'-磷酸泛酰巯基乙胺部分的前体。它由植物和微生物从头合成,但却是动物的膳食必需成分。泛酸盐生物合成途径在细菌中已得到充分确立,包括由panB、panD、panC和panE基因分别编码的酮泛解酸羟甲基转移酶(KPHMT)、L-天冬氨酸-α-脱羧酶(ADC)、泛酸盐合成酶(PS)和酮泛解酸还原酶(KPR)催化的四个酶促反应。在高等植物中,编码第一个(KPHMT)和最后一个(PS)酶的基因已在多个植物物种中得到鉴定和表征。在商业上,泛酸盐通过化学合成,用于维生素补充剂、饲料添加剂和化妆品中。生物转化是一种有吸引力的替代生产系统,它可以规避分离外消旋中间体的昂贵程序。我们探索了在植物中调控泛酸盐生物合成的可能性。构建了转基因油菜(甘蓝型油菜)株系,其中大肠杆菌KPHMT和PS基因在强组成型CaMV35SS启动子的控制下表达。在PS转基因株系中未观察到泛酸盐水平有显著变化。相比之下,表达KPHMT的植物叶片、花朵、角果和种子中的泛酸盐水平有所升高,与野生型植物相比增加了1.5至2.5倍。种子中的维生素含量最高,表明它们可能是生产目的的理想靶点。