Wiles Amy M, Ravi Dashnamoorthy, Bhavani Selvaraj, Bishop Alexander J R
Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
J Biomol Screen. 2008 Sep;13(8):777-84. doi: 10.1177/1087057108323125. Epub 2008 Aug 27.
Genome-wide RNA interference (RNAi) screening allows investigation of the role of individual genes in a process of choice. Most RNAi screens identify a large number of genes with a continuous gradient in the assessed phenotype. Screeners must decide whether to examine genes with the most robust phenotype or the full gradient of genes that cause an effect and how to identify candidate genes. The authors have used RNAi in Drosophila cells to examine viability in a 384-well plate format and compare 2 screens, untreated control and treatment. They compare multiple normalization methods, which take advantage of different features within the data, including quantile normalization, background subtraction, scaling, cellHTS2 (Boutros et al. 2006), and interquartile range measurement. Considering the false-positive potential that arises from RNAi technology, a robust validation method was designed for the purpose of gene selection for future investigations. In a retrospective analysis, the authors describe the use of validation data to evaluate each normalization method. Although no method worked ideally, a combination of 2 methods, background subtraction followed by quantile normalization and cellHTS2, at different thresholds, captures the most dependable and diverse candidate genes. Thresholds are suggested depending on whether a few candidate genes are desired or a more extensive systems-level analysis is sought. The normalization approaches and experimental design to perform validation experiments are likely to apply to those high-throughput screening systems attempting to identify genes for systems-level analysis.
全基因组RNA干扰(RNAi)筛选能够研究单个基因在特定选择过程中的作用。大多数RNAi筛选会鉴定出大量在评估表型上呈现连续梯度变化的基因。筛选者必须决定是研究具有最强表型的基因,还是研究导致某种效应的所有梯度变化的基因,以及如何识别候选基因。作者利用果蝇细胞中的RNAi技术,采用384孔板形式检测细胞活力,并比较了未处理对照和处理组的两组筛选结果。他们比较了多种归一化方法,这些方法利用了数据中的不同特征,包括分位数归一化、背景扣除、缩放、cellHTS2(Boutros等人,2006年)以及四分位距测量。考虑到RNAi技术可能产生的假阳性结果,为了后续研究的基因选择,设计了一种可靠的验证方法。在一项回顾性分析中,作者描述了如何使用验证数据来评估每种归一化方法。虽然没有一种方法能达到理想效果,但背景扣除后接不同阈值的分位数归一化和cellHTS2这两种方法的组合,能筛选出最可靠、最多样化的候选基因。根据是需要少数候选基因还是寻求更广泛的系统水平分析,给出了相应的阈值建议。执行验证实验的归一化方法和实验设计可能适用于那些试图识别用于系统水平分析的基因的高通量筛选系统。