Suppr超能文献

果蝇RNAi基因组筛选标准化方法分析及稳健验证方案的制定。

An analysis of normalization methods for Drosophila RNAi genomic screens and development of a robust validation scheme.

作者信息

Wiles Amy M, Ravi Dashnamoorthy, Bhavani Selvaraj, Bishop Alexander J R

机构信息

Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.

出版信息

J Biomol Screen. 2008 Sep;13(8):777-84. doi: 10.1177/1087057108323125. Epub 2008 Aug 27.

Abstract

Genome-wide RNA interference (RNAi) screening allows investigation of the role of individual genes in a process of choice. Most RNAi screens identify a large number of genes with a continuous gradient in the assessed phenotype. Screeners must decide whether to examine genes with the most robust phenotype or the full gradient of genes that cause an effect and how to identify candidate genes. The authors have used RNAi in Drosophila cells to examine viability in a 384-well plate format and compare 2 screens, untreated control and treatment. They compare multiple normalization methods, which take advantage of different features within the data, including quantile normalization, background subtraction, scaling, cellHTS2 (Boutros et al. 2006), and interquartile range measurement. Considering the false-positive potential that arises from RNAi technology, a robust validation method was designed for the purpose of gene selection for future investigations. In a retrospective analysis, the authors describe the use of validation data to evaluate each normalization method. Although no method worked ideally, a combination of 2 methods, background subtraction followed by quantile normalization and cellHTS2, at different thresholds, captures the most dependable and diverse candidate genes. Thresholds are suggested depending on whether a few candidate genes are desired or a more extensive systems-level analysis is sought. The normalization approaches and experimental design to perform validation experiments are likely to apply to those high-throughput screening systems attempting to identify genes for systems-level analysis.

摘要

全基因组RNA干扰(RNAi)筛选能够研究单个基因在特定选择过程中的作用。大多数RNAi筛选会鉴定出大量在评估表型上呈现连续梯度变化的基因。筛选者必须决定是研究具有最强表型的基因,还是研究导致某种效应的所有梯度变化的基因,以及如何识别候选基因。作者利用果蝇细胞中的RNAi技术,采用384孔板形式检测细胞活力,并比较了未处理对照和处理组的两组筛选结果。他们比较了多种归一化方法,这些方法利用了数据中的不同特征,包括分位数归一化、背景扣除、缩放、cellHTS2(Boutros等人,2006年)以及四分位距测量。考虑到RNAi技术可能产生的假阳性结果,为了后续研究的基因选择,设计了一种可靠的验证方法。在一项回顾性分析中,作者描述了如何使用验证数据来评估每种归一化方法。虽然没有一种方法能达到理想效果,但背景扣除后接不同阈值的分位数归一化和cellHTS2这两种方法的组合,能筛选出最可靠、最多样化的候选基因。根据是需要少数候选基因还是寻求更广泛的系统水平分析,给出了相应的阈值建议。执行验证实验的归一化方法和实验设计可能适用于那些试图识别用于系统水平分析的基因的高通量筛选系统。

相似文献

1
An analysis of normalization methods for Drosophila RNAi genomic screens and development of a robust validation scheme.
J Biomol Screen. 2008 Sep;13(8):777-84. doi: 10.1177/1087057108323125. Epub 2008 Aug 27.
4
A Guide to Genome-Wide In Vivo RNAi Applications in Drosophila.
Methods Mol Biol. 2016;1478:117-143. doi: 10.1007/978-1-4939-6371-3_6.
5
Methods for High-Throughput RNAi Screening in Drosophila Cells.
Methods Mol Biol. 2016;1478:95-116. doi: 10.1007/978-1-4939-6371-3_5.
6
Design and implementation of high-throughput RNAi screens in cultured Drosophila cells.
Nat Protoc. 2007;2(9):2245-64. doi: 10.1038/nprot.2007.250.
7
FlyRNAi: the Drosophila RNAi screening center database.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D489-94. doi: 10.1093/nar/gkj114.
8
Matter arising: off-targets and genome-scale RNAi screens in Drosophila.
Fly (Austin). 2007 Jan-Feb;1(1):1-5. doi: 10.4161/fly.3601.
9
A functional genomic analysis of cell morphology using RNA interference.
J Biol. 2003;2(4):27. doi: 10.1186/1475-4924-2-27. Epub 2003 Oct 1.
10
False negative rates in Drosophila cell-based RNAi screens: a case study.
BMC Genomics. 2011 Jan 20;12:50. doi: 10.1186/1471-2164-12-50.

引用本文的文献

2
siRNA Library Screening Identifies a Druggable Immune-Signature Driving Esophageal Adenocarcinoma Cell Growth.
Cell Mol Gastroenterol Hepatol. 2018 Jan 31;5(4):569-590. doi: 10.1016/j.jcmgh.2018.01.012. eCollection 2018.
3
EWS-FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma.
Nature. 2018 Mar 15;555(7696):387-391. doi: 10.1038/nature25748. Epub 2018 Mar 7.
4
RNAi screening in Drosophila cells and in vivo.
Methods. 2014 Jun 15;68(1):82-8. doi: 10.1016/j.ymeth.2014.02.018. Epub 2014 Feb 24.
5
High-throughput screening normalized to biological response: application to antiviral drug discovery.
J Biomol Screen. 2014 Jan;19(1):119-30. doi: 10.1177/1087057113496848. Epub 2013 Jul 16.
7
High content screening in neurodegenerative diseases.
J Vis Exp. 2012 Jan 6(59):e3452. doi: 10.3791/3452.
8
Normalizing for individual cell population context in the analysis of high-content cellular screens.
BMC Bioinformatics. 2011 Dec 20;12:485. doi: 10.1186/1471-2105-12-485.
9
FlyRNAi.org--the database of the Drosophila RNAi screening center: 2012 update.
Nucleic Acids Res. 2012 Jan;40(Database issue):D715-9. doi: 10.1093/nar/gkr953. Epub 2011 Nov 8.
10
Noise reduction in genome-wide perturbation screens using linear mixed-effect models.
Bioinformatics. 2011 Aug 15;27(16):2173-80. doi: 10.1093/bioinformatics/btr359. Epub 2011 Jun 17.

本文引用的文献

1
Median absolute deviation to improve hit selection for genome-scale RNAi screens.
J Biomol Screen. 2008 Feb;13(2):149-58. doi: 10.1177/1087057107312035. Epub 2008 Jan 23.
2
Design and implementation of high-throughput RNAi screens in cultured Drosophila cells.
Nat Protoc. 2007;2(9):2245-64. doi: 10.1038/nprot.2007.250.
3
Drosophila genome-wide RNAi screens: are they delivering the promise?
Cold Spring Harb Symp Quant Biol. 2006;71:141-8. doi: 10.1101/sqb.2006.71.027.
4
A pair of new statistical parameters for quality control in RNA interference high-throughput screening assays.
Genomics. 2007 Apr;89(4):552-61. doi: 10.1016/j.ygeno.2006.12.014. Epub 2007 Feb 2.
5
Genetic screening for signal transduction in the era of network biology.
Cell. 2007 Jan 26;128(2):225-31. doi: 10.1016/j.cell.2007.01.007.
6
Analysis of cell-based RNAi screens.
Genome Biol. 2006;7(7):R66. doi: 10.1186/gb-2006-7-7-R66.
7
Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
Stat Appl Genet Mol Biol. 2004;3:Article3. doi: 10.2202/1544-6115.1027. Epub 2004 Feb 12.
8
Robust statistical methods for hit selection in RNA interference high-throughput screening experiments.
Pharmacogenomics. 2006 Apr;7(3):299-309. doi: 10.2217/14622416.7.3.299.
9
Genome-wide RNAi analysis of growth and viability in Drosophila cells.
Science. 2004 Feb 6;303(5659):832-5. doi: 10.1126/science.1091266.
10
Summaries of Affymetrix GeneChip probe level data.
Nucleic Acids Res. 2003 Feb 15;31(4):e15. doi: 10.1093/nar/gng015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验