Wood Joseph P, Lemieux Paul, Betancourt Doris, Kariher Peter, Griffin Nicole
United States Environmental Protection Agency, Mail Code E343-06, Research Triangle Park, North Carolina 27711, USA.
Environ Sci Technol. 2008 Aug 1;42(15):5712-7. doi: 10.1021/es7021945.
Bacillus anthracis (B. anthracis) spores were released through the U.S. mail system in 2001, highlighting the need to develop efficacious methods of decontaminating and disposing of materials contaminated with biological agents. Incineration of building decontamination residue is a disposal option for such material, although the complete inactivation of bacterial spores via this technique is not a certainty. Tests revealed that under some circumstances, Geobacillus stearothermophilus (G. stearothermophilus; a surrogate for B. anthracis) spores embedded in building materials remained active after 35 min in a pilot-scale incinerator and survived with internal material bundle temperatures reaching over 500 degrees C. A model was also developed to predict survival of a bacterial spore population undergoing thermal treatment in an incinerator using the thermal destruction kinetic parameters obtained in a laboratory setting. The results of the pilot-scale incinerator experiments are compared to model predictions to assess the accuracy of the model.
2001年,炭疽芽孢杆菌(B. anthracis)孢子通过美国邮政系统被释放出来,这凸显了开发有效方法对受生物制剂污染的材料进行去污和处置的必要性。焚烧建筑物去污残渣是此类材料的一种处置选择,尽管通过这种技术使细菌孢子完全失活并不确定。测试表明,在某些情况下,嵌入建筑材料中的嗜热栖热放线菌(G. stearothermophilus;作为炭疽芽孢杆菌的替代物)孢子在中试规模的焚烧炉中35分钟后仍保持活性,并且在内部材料束温度超过500摄氏度的情况下存活下来。还开发了一个模型,利用在实验室环境中获得的热破坏动力学参数来预测焚烧炉中经过热处理的细菌孢子群体的存活率。将中试规模焚烧炉实验的结果与模型预测结果进行比较,以评估模型的准确性。