Song Joon Jin, Deng Weiguo, Lee Ho-Jin, Kwon Deukwoo
Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
Comput Biol Chem. 2008 Dec;32(6):426-32. doi: 10.1016/j.compbiolchem.2008.07.007. Epub 2008 Jul 15.
Classification problems have received considerable attention in biological and medical applications. In particular, classification methods combining to microarray technology play an important role in diagnosing and predicting disease, such as cancer, in medical research. Primary objective in classification is to build an optimal classifier based on the training sample in order to predict unknown class in the test sample. In this paper, we propose a unified approach for optimal gene classification with conjunction with functional principal component analysis (FPCA) in functional data analysis (FNDA) framework to classify time-course gene expression profiles based on information from the patterns. To derive an optimal classifier in FNDA, we also propose to find optimal number of bases in the smoothing step and functional principal components in FPCA using a cross-validation technique, and compare the performance of some popular classification techniques in the proposed setting. We illustrate the propose method with a simulation study and a real world data analysis.
分类问题在生物和医学应用中受到了广泛关注。特别是,结合微阵列技术的分类方法在医学研究中对诸如癌症等疾病的诊断和预测起着重要作用。分类的主要目标是基于训练样本构建一个最优分类器,以便预测测试样本中的未知类别。在本文中,我们提出了一种统一的方法,在功能数据分析(FNDA)框架中结合功能主成分分析(FPCA)进行最优基因分类,以基于模式信息对时间进程基因表达谱进行分类。为了在FNDA中推导最优分类器,我们还建议使用交叉验证技术在平滑步骤中找到最优的基数量以及在FPCA中找到功能主成分,并在所提出的设置中比较一些流行分类技术的性能。我们通过模拟研究和实际数据分析来说明所提出的方法。