Suppr超能文献

使用功能数据分析对时间基因表达数据进行分类。

Classification using functional data analysis for temporal gene expression data.

作者信息

Leng Xiaoyan, Müller Hans-Georg

机构信息

Wake Forest University School of Medicine, Public Health Sciences, Section on Biostatistics Medical Center Blvd., MRI-3, Winston-Salem, NC 27157, USA.

出版信息

Bioinformatics. 2006 Jan 1;22(1):68-76. doi: 10.1093/bioinformatics/bti742. Epub 2005 Oct 27.

Abstract

MOTIVATION

Temporal gene expression profiles provide an important characterization of gene function, as biological systems are predominantly developmental and dynamic. We propose a method of classifying collections of temporal gene expression curves in which individual expression profiles are modeled as independent realizations of a stochastic process. The method uses a recently developed functional logistic regression tool based on functional principal components, aimed at classifying gene expression curves into known gene groups. The number of eigenfunctions in the classifier can be chosen by leave-one-out cross-validation with the aim of minimizing the classification error.

RESULTS

We demonstrate that this methodology provides low-error-rate classification for both yeast cell-cycle gene expression profiles and Dictyostelium cell-type specific gene expression patterns. It also works well in simulations. We compare our functional principal components approach with a B-spline implementation of functional discriminant analysis for the yeast cell-cycle data and simulations. This indicates comparative advantages of our approach which uses fewer eigenfunctions/base functions. The proposed methodology is promising for the analysis of temporal gene expression data and beyond.

AVAILABILITY

MATLAB programs are available upon request.

摘要

动机

由于生物系统主要是发育性和动态性的,因此时间基因表达谱提供了基因功能的重要特征。我们提出了一种对时间基因表达曲线集合进行分类的方法,其中个体表达谱被建模为随机过程的独立实现。该方法使用了一种基于功能主成分的最近开发的功能逻辑回归工具,旨在将基因表达曲线分类到已知的基因组中。分类器中的特征函数数量可以通过留一法交叉验证来选择,目的是最小化分类误差。

结果

我们证明,这种方法对酵母细胞周期基因表达谱和盘基网柄菌细胞类型特异性基因表达模式都提供了低错误率的分类。它在模拟中也表现良好。我们将我们的功能主成分方法与用于酵母细胞周期数据和模拟的功能判别分析的B样条实现进行了比较。这表明我们的方法具有比较优势,它使用的特征函数/基函数更少。所提出的方法对于时间基因表达数据及其他数据的分析很有前景。

可用性

可根据要求提供MATLAB程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验