Suppr超能文献

红平红球菌对次氮基三乙酸 - 铁(III)络合物进行光降解和生物降解时该络合物的命运

Fate of the nitrilotriacetic acid-Fe(III) complex during photodegradation and biodegradation by Rhodococcus rhodochrous.

作者信息

Bunescu Andrei, Besse-Hoggan Pascale, Sancelme Martine, Mailhot Gilles, Delort Anne-Marie

机构信息

Laboratoire de Synthèse Et Etude de Systèmes à Intérêt Biologique, UMR 6504 CNRS-Université Blaise Pascal, 63177 Aubière Cedex, France.

出版信息

Appl Environ Microbiol. 2008 Oct;74(20):6320-6. doi: 10.1128/AEM.00537-08. Epub 2008 Aug 29.

Abstract

Aminopolycarboxylic acids are ubiquitous in natural waters and wastewaters. They have the ability to form very stable water-soluble complexes with many metallic di- or trivalent ions. The iron complex nitrilotriacetic acid-Fe(III) (FeNTA) has been previously shown to increase drastically the rate of photo- and biodegradation of 2-aminobenzothiazole, an organic pollutant, by Rhodococcus rhodochrous. For this paper, the fate of FeNTA was investigated during these degradation processes. First, it was shown, using in situ (1)H nuclear magnetic resonance, that the complex FeNTA was biodegraded by Rhodococcus rhodochrous cells, but the ligand (NTA) alone was not. This result indicates that FeNTA was transported and biotransformed inside the cell. The same products, including iminodiacetic acid, glycine, and formate, were obtained during the photo- and biodegradation processes of FeNTA, likely because they both involve oxidoreduction mechanisms. When the results of the different experiments are compared, the soluble iron, measured by spectrophotometry, was decreasing when microbial cells were present. About 20% of the initial iron was found inside the cells. These results allowed us to propose detailed mechanistic schemes for FeNTA degradation by solar light and by R. rhodochrous.

摘要

氨基多羧酸在天然水体和废水中普遍存在。它们能够与许多二价或三价金属离子形成非常稳定的水溶性络合物。先前已表明,铁络合物次氮基三乙酸铁(III)(FeNTA)能大幅提高红平红球菌对有机污染物2-氨基苯并噻唑的光降解和生物降解速率。在本文中,研究了FeNTA在这些降解过程中的去向。首先,通过原位¹H核磁共振表明,FeNTA络合物可被红平红球菌细胞生物降解,但单独的配体(NTA)则不能。这一结果表明FeNTA在细胞内被转运和生物转化。在FeNTA的光降解和生物降解过程中获得了相同的产物,包括亚氨基二乙酸、甘氨酸和甲酸,这可能是因为它们都涉及氧化还原机制。当比较不同实验的结果时,通过分光光度法测定的可溶性铁在有微生物细胞存在时会减少。约20%的初始铁存在于细胞内。这些结果使我们能够提出FeNTA在太阳光和红平红球菌作用下的详细降解机理。

相似文献

1
Fate of the nitrilotriacetic acid-Fe(III) complex during photodegradation and biodegradation by Rhodococcus rhodochrous.
Appl Environ Microbiol. 2008 Oct;74(20):6320-6. doi: 10.1128/AEM.00537-08. Epub 2008 Aug 29.
2
Comparison of microbial and photochemical processes and their combination for degradation of 2-aminobenzothiazole.
Appl Environ Microbiol. 2008 May;74(10):2976-84. doi: 10.1128/AEM.01696-07. Epub 2008 Feb 29.
3
2-Aminobenzothiazole degradation by free and Ca-alginate immobilized cells of Rhodococcus rhodochrous.
Chemosphere. 2009 Mar;75(1):121-8. doi: 10.1016/j.chemosphere.2008.11.021. Epub 2008 Dec 21.
4
Environmental fate and microbial degradation of aminopolycarboxylic acids.
FEMS Microbiol Rev. 2001 Jan;25(1):69-106. doi: 10.1111/j.1574-6976.2001.tb00572.x.
6
Impact of iron-complex (Fe(III)-NTA) on photoinduced degradation of 4-chlorophenol in aqueous solution.
Photochem Photobiol Sci. 2006 Apr;5(4):395-402. doi: 10.1039/b518211e. Epub 2006 Feb 10.
8
In vivo 31P and 13C NMR investigations of Rhodococcus rhodochrous metabolism and behaviour during biotransformation processes.
J Appl Microbiol. 2010 May;108(5):1733-43. doi: 10.1111/j.1365-2672.2009.04577.x. Epub 2009 Oct 7.
9
Bacterial Pu(V) reduction in the absence and presence of Fe(III)-NTA: modeling and experimental approach.
Biodegradation. 2011 Sep;22(5):921-9. doi: 10.1007/s10532-010-9451-z. Epub 2011 Jan 14.
10
NTA and Fe(III)NTA: differential patterns of renal toxicity in subchronic studies.
Hum Exp Toxicol. 2002 Aug;21(8):445-52. doi: 10.1191/0960327102ht273oa.

引用本文的文献

1
Biomolecular Interaction Studies Between Cytochrome PpcA From and the Electron Acceptor Ferric Nitrilotriacetate (Fe-NTA).
Front Microbiol. 2018 Nov 16;9:2741. doi: 10.3389/fmicb.2018.02741. eCollection 2018.
2
Photomixotrophic growth of Rhodobacter capsulatus SB1003 on ferrous iron.
Geobiology. 2012 May;10(3):216-22. doi: 10.1111/j.1472-4669.2011.00313.x. Epub 2011 Dec 29.

本文引用的文献

1
Comparison of microbial and photochemical processes and their combination for degradation of 2-aminobenzothiazole.
Appl Environ Microbiol. 2008 May;74(10):2976-84. doi: 10.1128/AEM.01696-07. Epub 2008 Feb 29.
2
Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads.
Appl Environ Microbiol. 2007 Oct;73(20):6421-8. doi: 10.1128/AEM.01051-07. Epub 2007 Sep 7.
3
Anthracene biodegradation and surface activity by an iron-stimulated Pseudomonas sp.
Bioresour Technol. 2008 May;99(7):2644-9. doi: 10.1016/j.biortech.2007.04.050. Epub 2007 Jun 14.
4
Bacterial growth yields on EDTA, NTA, and their biodegradation intermediates.
Biodegradation. 2008 Feb;19(1):41-52. doi: 10.1007/s10532-007-9113-y. Epub 2007 Apr 3.
5
Impact of iron-complex (Fe(III)-NTA) on photoinduced degradation of 4-chlorophenol in aqueous solution.
Photochem Photobiol Sci. 2006 Apr;5(4):395-402. doi: 10.1039/b518211e. Epub 2006 Feb 10.
6
Biodegradation of metal-complexing aminopolycarboxylic acids.
J Biosci Bioeng. 2001;92(2):89-97. doi: 10.1263/jbb.92.89.
7
Metabolism of 2-mercaptobenzothiazole by Rhodococcus rhodochrous.
Appl Environ Microbiol. 2004 Oct;70(10):6315-9. doi: 10.1128/AEM.70.10.6315-6319.2004.
8
Benzothiazole degradation by Rhodococcus pyridinovorans strain PA: evidence of a catechol 1,2-dioxygenase activity.
Appl Environ Microbiol. 2002 Dec;68(12):6114-20. doi: 10.1128/AEM.68.12.6114-6120.2002.
9
Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the tol (pWWO) plasmid.
Appl Environ Microbiol. 2001 Aug;67(8):3406-12. doi: 10.1128/AEM.67.8.3406-3412.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验