Suganuma Satoshi, Nakajima Kiyotaka, Kitano Masaaki, Yamaguchi Daizo, Kato Hideki, Hayashi Shigenobu, Hara Michikazu
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
J Am Chem Soc. 2008 Sep 24;130(38):12787-93. doi: 10.1021/ja803983h. Epub 2008 Aug 29.
The hydrolysis of cellulose into saccharides using a range of solid catalysts is investigated for potential application in the environmentally benign saccharification of cellulose. Crystalline pure cellulose is not hydrolyzed by conventional strong solid Brønsted acid catalysts such as niobic acid, H-mordenite, Nafion and Amberlyst-15, whereas amorphous carbon bearing SO 3H, COOH, and OH function as an efficient catalyst for the reaction. The apparent activation energy for the hydrolysis of cellulose into glucose using the carbon catalyst is estimated to be 110 kJ mol (-1), smaller than that for sulfuric acid under optimal conditions (170 kJ mol (-1)). The carbon catalyst can be readily separated from the saccharide solution after reaction for reuse in the reaction without loss of activity. The catalytic performance of the carbon catalyst is attributed to the ability of the material to adsorb beta-1,4 glucan, which does not adsorb to other solid acids.
研究了使用一系列固体催化剂将纤维素水解为糖类,以探讨其在纤维素环境友好型糖化中的潜在应用。结晶纯纤维素不会被常规的强固体布朗斯特酸催化剂(如铌酸、氢型丝光沸石、全氟磺酸离子交换树脂和Amberlyst-15)水解,而带有SO₃H、COOH和OH的无定形碳则作为该反应的有效催化剂。使用碳催化剂将纤维素水解为葡萄糖的表观活化能估计为110 kJ mol⁻¹,低于最佳条件下硫酸的表观活化能(170 kJ mol⁻¹)。反应后,碳催化剂可轻松从糖溶液中分离出来,以便在反应中重复使用而不损失活性。碳催化剂的催化性能归因于该材料吸附β-1,4葡聚糖的能力,而β-1,4葡聚糖不会吸附到其他固体酸上。