Suppr超能文献

用于微波加热下果糖转化为5-羟甲基糠醛的铁改性酸性碳

Iron-Modified Acid Carbons for the Conversion of Fructose to 5-Hydroxymethylfurfural under Microwave Heating.

作者信息

Machado Letícia F L, Andrade Luana S, Mandelli Dalmo, Carvalho Wagner A

机构信息

Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Av. dos Estados, 5001, Santo André, SP CEP 09210-580, Brazil.

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.

出版信息

ACS Omega. 2024 Nov 1;9(45):45328-45341. doi: 10.1021/acsomega.4c07030. eCollection 2024 Nov 12.

Abstract

Carbons with Brønsted acidic sites and iron oxide modifications were prepared through hydrothermal carbonization and glycerol pyrolysis in the presence of sulfuric acid, magnetite, and iron(III) nitrate. The solids were tested as catalysts in converting fructose to 5-hydroxymethylfurfural (5-HMF). Characterization techniques revealed a uniform presence of 4.89 mmol g total acidic groups, including up to 1.87 mmol g sulfonic and carboxylic groups. Combined with a reduced surface area, the Brønsted and Lewis acidity enabled the conversion of 94% of fructose with selectivity values as high as 95% for 5-HMF in just 10 min at 140 °C, using microwave heating and dimethyl sulfoxide (DMSO) as the solvent. This performance was attributed to the selective heating of the catalyst surface by the microwave absorption capacity of the acidic groups and iron oxide, leading to the formation of "hot spots." The catalyst obtained by hydrothermal carbonization in the presence of FeO, HCC-20% FeO, demonstrated stability when reused for up to four consecutive cycles. A slight reduction in conversion and selectivity was observed after the first use, attributed to the presence of acid species not incorporated into the solid during the synthesis process.

摘要

通过在硫酸、磁铁矿和硝酸铁存在下进行水热碳化和甘油热解,制备了具有布朗斯台德酸性位点和氧化铁修饰的碳材料。这些固体作为催化剂用于将果糖转化为5-羟甲基糠醛(5-HMF)进行了测试。表征技术表明,总共存在4.89 mmol g的均匀酸性基团,其中包括高达1.87 mmol g的磺酸基和羧基。结合降低的表面积,布朗斯台德酸性和路易斯酸性使得在140°C下仅用10分钟,使用微波加热和二甲基亚砜(DMSO)作为溶剂时,果糖的转化率达到94%,5-HMF的选择性高达95%。这种性能归因于酸性基团和氧化铁的微波吸收能力对催化剂表面的选择性加热,导致形成“热点”。在FeO存在下通过水热碳化获得的催化剂HCC-20% FeO,在连续重复使用多达四个循环时表现出稳定性。首次使用后观察到转化率和选择性略有降低,这归因于在合成过程中未掺入固体中的酸性物质的存在。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b6/11561637/02a45dec9090/ao4c07030_0001.jpg

相似文献

1
Iron-Modified Acid Carbons for the Conversion of Fructose to 5-Hydroxymethylfurfural under Microwave Heating.
ACS Omega. 2024 Nov 1;9(45):45328-45341. doi: 10.1021/acsomega.4c07030. eCollection 2024 Nov 12.
3
Examining Acid Formation During the Selective Dehydration of Fructose to 5-Hydroxymethylfurfural in Dimethyl Sulfoxide and Water.
ChemSusChem. 2019 May 21;12(10):2211-2219. doi: 10.1002/cssc.201803013. Epub 2019 Apr 24.
4
Fabrication of Brønsted acidic ionic liquids functionalized organosilica nanospheres for microwave-assisted fructose valorization.
Sci Total Environ. 2022 Apr 20;818:151761. doi: 10.1016/j.scitotenv.2021.151761. Epub 2021 Nov 18.
6
High-efficiency synthesis of 5-hydroxymethylfurfural and 2,5-diformylfuran from fructose over magnetic separable catalysts.
J Colloid Interface Sci. 2021 Nov 15;602:146-158. doi: 10.1016/j.jcis.2021.05.161. Epub 2021 May 30.
7
Chromium Oxide-modified Mesoporous Zirconium Dioxide: Efficient Heterogeneous Catalyst for the Synthesis of 5-Hydroxymethylfurfural.
Chem Asian J. 2022 Oct 4;17(19):e202200653. doi: 10.1002/asia.202200653. Epub 2022 Aug 30.
8
Dehydration of Fructose to 5-HMF over Acidic TiO Catalysts.
Materials (Basel). 2020 Mar 6;13(5):1178. doi: 10.3390/ma13051178.
10
Fabrication of hydrophobic polymer foams with double acid sites on surface of macropore for conversion of carbohydrate.
Carbohydr Polym. 2016 Jun 5;143:212-22. doi: 10.1016/j.carbpol.2016.02.034. Epub 2016 Feb 15.

本文引用的文献

1
Molecular structure and composition elucidation of an industrial humin and its fractions.
Green Chem. 2024 Mar 21;26(13):7739-7751. doi: 10.1039/d4gc00429a. eCollection 2024 Jul 1.
2
Recent advances in catalytic synthesis of 2,5-furandimethanol from 5-hydroxymethylfurfural and carbohydrates.
Bioresour Bioprocess. 2023 Aug 19;10(1):52. doi: 10.1186/s40643-023-00676-x.
3
Recent Advances in Zeolites-Catalyzed Biomass Conversion to Hydroxymethylfurfural: The Role of Porosity and Acidity.
Chempluschem. 2024 Feb;89(2):e202300399. doi: 10.1002/cplu.202300399. Epub 2023 Nov 14.
4
A concise review of glycerol derivatives for use as fuel additives.
Heliyon. 2023 Jan 18;9(1):e13041. doi: 10.1016/j.heliyon.2023.e13041. eCollection 2023 Jan.
5
Mechanistic Investigation into the Formation of Humins in Acid-Catalyzed Biomass Reactions.
ACS Omega. 2022 Nov 28;7(49):44786-44795. doi: 10.1021/acsomega.2c04783. eCollection 2022 Dec 13.
7
FeO nanoparticles coated with ultra-thin carbon layer for polarization-controlled microwave absorption performance.
J Colloid Interface Sci. 2021 Oct 15;600:382-389. doi: 10.1016/j.jcis.2021.05.055. Epub 2021 May 13.
8
Magnetic biochar derived from waste palm kernel shell for biodiesel production via sulfonation.
Waste Manag. 2020 Dec;118:626-636. doi: 10.1016/j.wasman.2020.09.016. Epub 2020 Oct 1.
9
Activated carbon production from industrial yeast residue to boost up circular bioeconomy.
Environ Sci Pollut Res Int. 2021 May;28(19):24694-24705. doi: 10.1007/s11356-020-10458-z. Epub 2020 Aug 15.
10
Insight into activated carbon from different kinds of chemical activating agents: A review.
Sci Total Environ. 2020 Dec 1;746:141094. doi: 10.1016/j.scitotenv.2020.141094. Epub 2020 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验