Frederick Kendra King, Sharp Kim A, Warischalk Nicholas, Wand A Joshua
Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, USA.
J Phys Chem B. 2008 Sep 25;112(38):12095-103. doi: 10.1021/jp8038576. Epub 2008 Aug 29.
NMR spin relaxation retains a central role in the characterization of the fast internal motion of proteins and their complexes. Knowledge of the distribution and amplitude of the motion of amino acid side chains is critical for the interpretation of the dynamical proxy for the residual conformational entropy of proteins, which can potentially significantly contribute to the entropy of protein function. A popular treatment of NMR relaxation phenomena in macromolecules dissolved in liquids is the so-called model-free approach of Lipari and Szabo. The robustness of the mode-free approach has recently been strongly criticized and the remarkable range and structural context of the internal motion of proteins, characterized by such NMR relaxation techniques, attributed to artifacts arising from the model-free treatment, particularly with respect to the symmetry of the underlying motion. We develop an objective quantification of both spatial and temporal asymmetry of motion and re-examine the foundation of the model-free treatment. Concerns regarding the robustness of the model-free approach to asymmetric motion appear to be generally unwarranted. The generalized order parameter is robustly recovered. The sensitivity of the model-free treatment to asymmetric motion is restricted to the effective correlation time, which is by definition a normalized quantity and not a true time constant and therefore of much less interest in this context. With renewed confidence in the model-free approach, we then examine the microscopic distribution of side chain motion in the complex between calcium-saturated calmodulin and the calmodulin-binding domain of the endothelial nitric oxide synthase. Deuterium relaxation is used to characterize the motion of methyl groups in the complex. A remarkable range of Lipari-Szabo model-free generalized order parameters are seen with little correlation with basic structural parameters such as the depth of burial. These results are contrasted with the homologous complex with the neuronal nitric oxide synthase calmodulin-binding domain, which has distinctly different thermodynamic origins for high affinity binding.
核磁共振自旋弛豫在蛋白质及其复合物快速内部运动的表征中仍占据核心地位。了解氨基酸侧链运动的分布和幅度对于解释蛋白质剩余构象熵的动力学代理至关重要,而这可能对蛋白质功能的熵有显著贡献。对于溶解在液体中的大分子,一种流行的核磁共振弛豫现象处理方法是所谓的利帕里和萨博的无模型方法。最近,无模型方法的稳健性受到了强烈批评,并且通过这种核磁共振弛豫技术表征的蛋白质内部运动的显著范围和结构背景,被归因于无模型处理产生的伪像,特别是关于潜在运动的对称性。我们开发了一种对运动的空间和时间不对称性的客观量化方法,并重新审视了无模型处理的基础。关于无模型方法对不对称运动稳健性的担忧似乎通常是没有根据的。广义序参量能够稳健地恢复。无模型处理对不对称运动的敏感性仅限于有效相关时间,根据定义,这是一个归一化量,而不是真正的时间常数,因此在这种情况下不太受关注。带着对无模型方法的新信心,我们接着研究了钙饱和钙调蛋白与内皮型一氧化氮合酶的钙调蛋白结合结构域之间复合物中侧链运动的微观分布。氘弛豫用于表征复合物中甲基的运动。我们观察到一系列显著的利帕里 - 萨博无模型广义序参量,它们与诸如埋藏深度等基本结构参数几乎没有相关性。这些结果与神经元型一氧化氮合酶钙调蛋白结合结构域的同源复合物形成对比,后者具有明显不同的高亲和力结合的热力学起源。