Suppr超能文献

一种用于管理临床研究网络中不良事件的自动化标准化系统。

An automated standardized system for managing adverse events in clinical research networks.

作者信息

Richesson Rachel L, Malloy Jamie F, Paulus Kathleen, Cuthbertson David, Krischer Jeffrey P

机构信息

University of South Florida College of Medicine, Tampa, Florida 33612, USA.

出版信息

Drug Saf. 2008;31(10):807-22. doi: 10.2165/00002018-200831100-00001.

Abstract

Multi-site clinical protocols and clinical research networks require tools to manage and monitor adverse events (AEs). To be successful, these tools must be designed to comply with applicable regulatory requirements, reflect current data standards, international directives and advances in pharmacovigilance, and be convenient and adaptable to multiple needs. We describe an Adverse Event Data Management System (AEDAMS) that is used across multiple study designs in the various clinical research networks and multi-site studies for which we provide data and technological support. Investigators enter AE data using a standardized and structured web-based data collection form. The automated AEDAMS forwards the AE information to individuals in designated roles (investigators, sponsors, Data Safety and Monitoring Boards) and manages subsequent communications in real time, as the entire reporting, review and notification is done by automatically generated emails. The system was designed to adhere to timelines and data requirements in compliance with Good Clinical Practice (International Conference on Harmonisation E6) reporting standards and US federal regulations, and can be configured to support AE management for many types of study designs and adhere to various domestic or international reporting requirements. This tool allows AEs to be collected in a standard way by multiple distributed users, facilitates accurate and timely AE reporting and reviews, and allows the centralized management of AEs. Our design justification and experience with the system are described.

摘要

多中心临床方案和临床研究网络需要管理和监测不良事件(AE)的工具。要取得成功,这些工具必须设计成符合适用的监管要求,反映当前的数据标准、国际指令以及药物警戒方面的进展,并且要方便且能适应多种需求。我们描述了一种不良事件数据管理系统(AEDAMS),该系统在我们提供数据和技术支持的各种临床研究网络和多中心研究中的多个研究设计中都有使用。研究人员使用标准化且结构化的基于网络的数据收集表输入AE数据。自动化的AEDAMS会将AE信息转发给指定角色的人员(研究人员、申办者、数据安全监测委员会),并实时管理后续通信,因为整个报告、审查和通知都是通过自动生成的电子邮件完成的。该系统的设计旨在遵守符合《药物临床试验质量管理规范》(国际协调会议E6)报告标准和美国联邦法规的时间线和数据要求,并且可以进行配置,以支持多种类型研究设计的AE管理,并遵守各种国内或国际报告要求。这个工具允许多个分布式用户以标准方式收集AE,便于准确及时地报告和审查AE,并实现AE的集中管理。我们描述了该系统的设计依据和使用经验。

相似文献

1
An automated standardized system for managing adverse events in clinical research networks.
Drug Saf. 2008;31(10):807-22. doi: 10.2165/00002018-200831100-00001.
3
American Society of Clinical Oncology policy statement: oversight of clinical research.
J Clin Oncol. 2003 Jun 15;21(12):2377-86. doi: 10.1200/JCO.2003.04.026. Epub 2003 Apr 29.
4
Automated summaries of serious adverse events in the hepatitis C antiviral long-term treatment against cirrhosis trial.
Clin Trials. 2009 Dec;6(6):618-27. doi: 10.1177/1740774509348525. Epub 2009 Nov 4.
6
Patient-Reported Outcome Measures in Safety Event Reporting: PROSPER Consortium guidance.
Drug Saf. 2013 Dec;36(12):1129-49. doi: 10.1007/s40264-013-0113-z.
7
Signal detection of human papillomavirus vaccines using the Korea Adverse Events Reporting System database, between 2005 and 2016.
Int J Clin Pharm. 2019 Oct;41(5):1365-1372. doi: 10.1007/s11096-019-00881-9. Epub 2019 Jul 16.
8
Adverse event reporting in publications compared with sponsor database for cancer clinical trials.
J Clin Oncol. 2006 Aug 20;24(24):3933-8. doi: 10.1200/JCO.2005.05.3959.
9
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology.
J Biomed Inform. 2018 Jul;83:73-86. doi: 10.1016/j.jbi.2018.05.019. Epub 2018 Jun 1.

引用本文的文献

1
Navigating duplication in pharmacovigilance databases: a scoping review.
BMJ Open. 2024 Apr 29;14(4):e081990. doi: 10.1136/bmjopen-2023-081990.
2
The Rare Diseases Clinical Research Network's organization and approach to observational research and health outcomes research.
J Gen Intern Med. 2014 Aug;29 Suppl 3(Suppl 3):S739-44. doi: 10.1007/s11606-014-2894-x.

本文引用的文献

1
Heterogeneous but "standard" coding systems for adverse events: Issues in achieving interoperability between apples and oranges.
Contemp Clin Trials. 2008 Sep;29(5):635-45. doi: 10.1016/j.cct.2008.02.004. Epub 2008 Mar 5.
2
Study design of the Trial to Reduce IDDM in the Genetically at Risk (TRIGR).
Pediatr Diabetes. 2007 Jun;8(3):117-37. doi: 10.1111/j.1399-5448.2007.00239.x.
4
Implementation of electronic data capture systems: barriers and solutions.
Contemp Clin Trials. 2007 May;28(3):329-36. doi: 10.1016/j.cct.2007.01.001. Epub 2007 Jan 11.
6
TEDDY--The Environmental Determinants of Diabetes in the Young: an observational clinical trial.
Ann N Y Acad Sci. 2006 Oct;1079:320-6. doi: 10.1196/annals.1375.049.
7
Dietary insulin as an immunogen and tolerogen.
Pediatr Allergy Immunol. 2006 Nov;17(7):538-43. doi: 10.1111/j.1399-3038.2006.00447.x.
8
Automated identification of adverse events related to central venous catheters.
J Biomed Inform. 2007 Apr;40(2):174-82. doi: 10.1016/j.jbi.2006.06.003. Epub 2006 Jun 9.
9
Rare disease research gets boost.
JAMA. 2006 Jun 28;295(24):2836-8. doi: 10.1001/jama.295.24.2836.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验