Suppr超能文献

评估自然语言处理 (NLP) 系统,以使用 MedDRA 术语对药品标签进行注释。

Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology.

机构信息

FDA CDER Office of Biostatistics, Silver Spring, MD, United States.

FDA CDER Office of Surveillance and Epidemiology, Silver Spring, MD, United States.

出版信息

J Biomed Inform. 2018 Jul;83:73-86. doi: 10.1016/j.jbi.2018.05.019. Epub 2018 Jun 1.

Abstract

INTRODUCTION

The FDA Adverse Event Reporting System (FAERS) is a primary data source for identifying unlabeled adverse events (AEs) in a drug or biologic drug product's postmarketing phase. Many AE reports must be reviewed by drug safety experts to identify unlabeled AEs, even if the reported AEs are previously identified, labeled AEs. Integrating the labeling status of drug product AEs into FAERS could increase report triage and review efficiency. Medical Dictionary for Regulatory Activities (MedDRA) is the standard for coding AE terms in FAERS cases. However, drug manufacturers are not required to use MedDRA to describe AEs in product labels. We hypothesized that natural language processing (NLP) tools could assist in automating the extraction and MedDRA mapping of AE terms in drug product labels.

MATERIALS AND METHODS

We evaluated the performance of three NLP systems, (ETHER, I2E, MetaMap) for their ability to extract AE terms from drug labels and translate the terms to MedDRA Preferred Terms (PTs). Pharmacovigilance-based annotation guidelines for extracting AE terms from drug labels were developed for this study. We compared each system's output to MedDRA PT AE lists, manually mapped by FDA pharmacovigilance experts using the guidelines, for ten drug product labels known as the "gold standard AE list" (GSL) dataset. Strict time and configuration conditions were imposed in order to test each system's capabilities under conditions of no human intervention and minimal system configuration. Each NLP system's output was evaluated for precision, recall and F measure in comparison to the GSL. A qualitative error analysis (QEA) was conducted to categorize a random sample of each NLP system's false positive and false negative errors.

RESULTS

A total of 417, 278, and 250 false positive errors occurred in the ETHER, I2E, and MetaMap outputs, respectively. A total of 100, 80, and 187 false negative errors occurred in ETHER, I2E, and MetaMap outputs, respectively. Precision ranged from 64% to 77%, recall from 64% to 83% and F measure from 67% to 79%. I2E had the highest precision (77%), recall (83%) and F measure (79%). ETHER had the lowest precision (64%). MetaMap had the lowest recall (64%). The QEA found that the most prevalent false positive errors were context errors such as "Context error/General term", "Context error/Instructions or monitoring parameters", "Context error/Medical history preexisting condition underlying condition risk factor or contraindication", and "Context error/AE manifestations or secondary complication". The most prevalent false negative errors were in the "Incomplete or missed extraction" error category. Missing AE terms were typically due to long terms, or terms containing non-contiguous words which do not correspond exactly to MedDRA synonyms. MedDRA mapping errors were a minority of errors for ETHER and I2E but were the most prevalent false positive errors for MetaMap.

CONCLUSIONS

The results demonstrate that it may be feasible to use NLP tools to extract and map AE terms to MedDRA PTs. However, the NLP tools we tested would need to be modified or reconfigured to lower the error rates to support their use in a regulatory setting. Tools specific for extracting AE terms from drug labels and mapping the terms to MedDRA PTs may need to be developed to support pharmacovigilance. Conducting research using additional NLP systems on a larger, diverse GSL would also be informative.

摘要

简介

FDA 不良事件报告系统(FAERS)是在药物或生物制品上市后阶段识别未标记不良事件(AE)的主要数据源。许多 AE 报告必须由药物安全专家进行审查,以识别未标记的 AE,即使报告的 AE 是先前确定的、标记的 AE。将药物产品 AE 的标签状态纳入 FAERS 中可以提高报告分类和审查效率。医疗监管活动医学词典(MedDRA)是 FAERS 病例中 AE 术语编码的标准。然而,药品制造商没有被要求使用 MedDRA 来描述产品标签中的 AE。我们假设自然语言处理(NLP)工具可以帮助自动提取和 MedDRA 映射药物产品标签中的 AE 术语。

材料和方法

我们评估了三种 NLP 系统(ETHER、I2E、MetaMap)从药物标签中提取 AE 术语并将术语翻译为 MedDRA 首选术语(PT)的能力。为这项研究开发了从药物标签中提取 AE 术语的基于药物警戒的注释指南。我们将每个系统的输出与 MedDRA PT AE 列表进行了比较,MedDRA PT AE 列表是使用指南由 FDA 药物警戒专家手动映射的,共十个药物产品标签,称为“黄金标准 AE 列表”(GSL)数据集。为了在没有人工干预和最小系统配置的情况下测试每个系统的功能,严格规定了时间和配置条件。每个 NLP 系统的输出与 GSL 进行了比较,以评估其精度、召回率和 F 度量。进行了定性错误分析(QEA),以对每个 NLP 系统的假阳性和假阴性错误进行分类。

结果

ETHER、I2E 和 MetaMap 的输出分别产生了 417、278 和 250 个假阳性错误。ETHER、I2E 和 MetaMap 的输出分别产生了 100、80 和 187 个假阴性错误。精度范围为 64%至 77%,召回率为 64%至 83%,F 度量为 67%至 79%。I2E 的精度(77%)最高,召回率(83%)和 F 度量(79%)最高。ETHER 的精度最低(64%)。MetaMap 的召回率最低(64%)。QEA 发现最常见的假阳性错误是上下文错误,例如“上下文错误/一般术语”、“上下文错误/说明或监测参数”、“上下文错误/既往病史、潜在疾病、危险因素或禁忌症”和“上下文错误/AE 表现或次要并发症”。最常见的假阴性错误属于“提取不完整或缺失”错误类别。缺失的 AE 术语通常是由于术语较长,或术语包含不连续的词,与 MedDRA 同义词不完全对应。MedDRA 映射错误是 ETHER 和 I2E 错误中的少数,但却是 MetaMap 中最常见的假阳性错误。

结论

结果表明,使用 NLP 工具提取和映射 AE 术语到 MedDRA PT 可能是可行的。然而,我们测试的 NLP 工具需要进行修改或重新配置,以降低错误率,以支持它们在监管环境中的使用。可能需要开发专门用于从药物标签中提取 AE 术语并将术语映射到 MedDRA PT 的工具,以支持药物警戒。使用更大、更多样化的 GSL 对其他 NLP 系统进行研究也将提供信息。

相似文献

7
Comparison of text processing methods in social media-based signal detection.社交媒体信号检测中文本处理方法的比较。
Pharmacoepidemiol Drug Saf. 2019 Oct;28(10):1309-1317. doi: 10.1002/pds.4857. Epub 2019 Aug 7.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验