Greene Michelle R, Oliva Aude
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue 46-4078, Cambridge, MA 02139, USA.
Cogn Psychol. 2009 Mar;58(2):137-76. doi: 10.1016/j.cogpsych.2008.06.001. Epub 2008 Aug 30.
Human observers are able to rapidly and accurately categorize natural scenes, but the representation mediating this feat is still unknown. Here we propose a framework of rapid scene categorization that does not segment a scene into objects and instead uses a vocabulary of global, ecological properties that describe spatial and functional aspects of scene space (such as navigability or mean depth). In Experiment 1, we obtained ground truth rankings on global properties for use in Experiments 2-4. To what extent do human observers use global property information when rapidly categorizing natural scenes? In Experiment 2, we found that global property resemblance was a strong predictor of both false alarm rates and reaction times in a rapid scene categorization experiment. To what extent is global property information alone a sufficient predictor of rapid natural scene categorization? In Experiment 3, we found that the performance of a classifier representing only these properties is indistinguishable from human performance in a rapid scene categorization task in terms of both accuracy and false alarms. To what extent is this high predictability unique to a global property representation? In Experiment 4, we compared two models that represent scene object information to human categorization performance and found that these models had lower fidelity at representing the patterns of performance than the global property model. These results provide support for the hypothesis that rapid categorization of natural scenes may not be mediated primarily though objects and parts, but also through global properties of structure and affordance.
人类观察者能够快速且准确地对自然场景进行分类,但介导这一能力的表征仍然未知。在此,我们提出了一个快速场景分类框架,该框架不会将场景分割为物体,而是使用一组描述场景空间的空间和功能方面(如可导航性或平均深度)的全局生态属性词汇。在实验1中,我们获得了用于实验2至4的关于全局属性的真实排名。人类观察者在快速对自然场景进行分类时,在多大程度上使用全局属性信息?在实验2中,我们发现在快速场景分类实验中,全局属性相似性是误报率和反应时间的有力预测指标。仅全局属性信息在多大程度上足以预测快速自然场景分类?在实验3中,我们发现仅表示这些属性的分类器在快速场景分类任务中的表现,在准确性和误报方面与人类表现难以区分。这种高预测性在多大程度上是全局属性表征所独有的?在实验4中,我们将两个表示场景物体信息的模型与人类分类表现进行了比较,发现这些模型在表示表现模式方面比全局属性模型的保真度更低。这些结果为以下假设提供了支持:自然场景的快速分类可能主要不是通过物体和部分来介导的,而是也通过结构和可供性的全局属性来介导的。