文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于功能域组成预测肽酶类别。

Prediction of peptidase category based on functional domain composition.

作者信息

Xu Xiaochun, Yu Dong, Fang Wei, Cheng Yushao, Qian Ziliang, Lu Wencong, Cai Yudong, Feng Kaiyan

机构信息

CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China

出版信息

J Proteome Res. 2008 Oct;7(10):4521-4. doi: 10.1021/pr800292w. Epub 2008 Sep 3.


DOI:10.1021/pr800292w
PMID:18763822
Abstract

Peptidases play pivotal regulatory roles in conception, birth, digestion, growth, maturation, aging, and death of all organisms. These regulatory roles include activation, synthesis and turnover of proteins. In the proteomics era, computational methods to identify peptidases and catalog the peptidases into six different major classes-aspartic peptidases, cysteine peptidases, glutamic peptidases, metallo peptidases, serine peptidases and threonine peptidases can give an instant glance at the biological functions of a newly identified protein. In this contribution, by combining the nearest neighbor algorithm and the functional domain composition, we introduce both an automatic peptidase identifier and an automatic peptidase classier. The successful identification and classification rates are 93.7% and 96.5% for our peptidase identifier and peptidase classifier, respectively. Free online peptidase identifier and peptidase classifier are provided on our Web page http://pcal.biosino.org/protease_classification.html.

摘要

肽酶在所有生物体的受孕、出生、消化、生长、成熟、衰老和死亡过程中发挥着关键的调节作用。这些调节作用包括蛋白质的激活、合成和周转。在蛋白质组学时代,通过计算方法来识别肽酶并将其归类为六个不同的主要类别——天冬氨酸肽酶、半胱氨酸肽酶、谷氨酸肽酶、金属肽酶、丝氨酸肽酶和苏氨酸肽酶,能够快速了解新鉴定蛋白质的生物学功能。在本论文中,我们结合最近邻算法和功能域组成,引入了一个自动肽酶识别器和一个自动肽酶分类器。我们的肽酶识别器和肽酶分类器的成功识别率和分类率分别为93.7%和96.5%。我们在网页http://pcal.biosino.org/protease_classification.html上提供了免费的在线肽酶识别器和肽酶分类器。

相似文献

[1]
Prediction of peptidase category based on functional domain composition.

J Proteome Res. 2008-10

[2]
Prediction of protease types in a hybridization space.

Biochem Biophys Res Commun. 2006-1-20

[3]
Prediction of subcellular protein localization based on functional domain composition.

Biochem Biophys Res Commun. 2007-6-1

[4]
'Species' of peptidases.

Biol Chem. 2007-11

[5]
ProtIdent: a web server for identifying proteases and their types by fusing functional domain and sequential evolution information.

Biochem Biophys Res Commun. 2008-11-14

[6]
ECS: an automatic enzyme classifier based on functional domain composition.

Comput Biol Chem. 2007-6

[7]
MEROPS: the peptidase database.

Nucleic Acids Res. 2004-1-1

[8]
A computational approach for detecting peptidases and their specific inhibitors at the genome level.

BMC Bioinformatics. 2007-3-8

[9]
Vector-G: multi-modular SVM-based heterotrimeric G protein prediction.

In Silico Biol. 2008

[10]
Predicting protease types by hybridizing gene ontology and pseudo amino acid composition.

Proteins. 2006-5-15

引用本文的文献

[1]
Identifying Functions of Proteins in Mice With Functional Embedding Features.

Front Genet. 2022-5-16

[2]
REGULATOR: a database of metazoan transcription factors and maternal factors for developmental studies.

BMC Bioinformatics. 2015-4-10

[3]
Short toxin-like proteins abound in Cnidaria genomes.

Toxins (Basel). 2012-11-16

[4]
Prediction of RNA-binding proteins by voting systems.

J Biomed Biotechnol. 2011

[5]
Predicting the network of substrate-enzyme-product triads by combining compound similarity and functional domain composition.

BMC Bioinformatics. 2010-5-31

[6]
Prediction of interactiveness of proteins and nucleic acids based on feature selections.

Mol Divers. 2009-10-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索