Suppr超能文献

一种在基因组水平上检测肽酶及其特异性抑制剂的计算方法。

A computational approach for detecting peptidases and their specific inhibitors at the genome level.

作者信息

Bartoli Lisa, Calabrese Remo, Fariselli Piero, Mita Damiano G, Casadio Rita

机构信息

Laboratory of Biocomputing, CIRB/Department of Biology, University of Bologna, Bologna, Italy.

出版信息

BMC Bioinformatics. 2007 Mar 8;8 Suppl 1(Suppl 1):S3. doi: 10.1186/1471-2105-8-S1-S3.

Abstract

BACKGROUND

Peptidases are proteolytic enzymes responsible for fundamental cellular activities in all organisms. Apparently about 2-5% of the genes encode for peptidases, irrespectively of the organism source. The basic peptidase function is "protein digestion" and this can be potentially dangerous in living organisms when it is not strictly controlled by specific inhibitors. In genome annotation a basic question is to predict gene function. Here we describe a computational approach that can filter peptidases and their inhibitors out of a given proteome. Furthermore and as an added value to MEROPS, a specific database for peptidases already available in the public domain, our method can predict whether a pair of peptidase/inhibitor can interact, eventually listing all possible predicted ligands (peptidases and/or inhibitors).

RESULTS

We show that by adopting a decision-tree approach the accuracy of PROSITE and HMMER in detecting separately the four major peptidase types (Serine, Aspartic, Cysteine and Metallo- Peptidase) and their inhibitors among a non redundant set of globular proteins can be improved by some percentage points with respect to that obtained with each method separately. More importantly, our method can then predict pairs of peptidases and interacting inhibitors, scoring a joint global accuracy of 99% with coverage for the positive cases (peptidase/inhibitor) close to 100% and a correlation coefficient of 0.91%. In this task the decision-tree approach outperforms the single methods.

CONCLUSION

The decision-tree can reliably classify protein sequences as peptidases or inhibitors, belonging to a certain class, and can provide a comprehensive list of possible interacting pairs of peptidase/inhibitor. This information can help the design of experiments to detect interacting peptidase/inhibitor complexes and can speed up the selection of possible interacting candidates, without searching for them separately and manually combining the obtained results. A web server specifically developed for annotating peptidases and their inhibitors (HIPPIE) is available at http://gpcr.biocomp.unibo.it/cgi/predictors/hippie/pred_hippie.cgi.

摘要

背景

肽酶是一类蛋白水解酶,负责所有生物体中的基本细胞活动。显然,无论生物体来源如何,约2 - 5%的基因编码肽酶。肽酶的基本功能是“蛋白质消化”,当它不受特定抑制剂严格控制时,在活生物体中可能具有潜在危险性。在基因组注释中,一个基本问题是预测基因功能。在此,我们描述一种计算方法,该方法可以从给定的蛋白质组中筛选出肽酶及其抑制剂。此外,作为对已在公共领域可用的肽酶特定数据库MEROPS的附加值,我们的方法可以预测一对肽酶/抑制剂是否能够相互作用,并最终列出所有可能的预测配体(肽酶和/或抑制剂)。

结果

我们表明,通过采用决策树方法,相对于分别使用PROSITE和HMMER这两种方法各自获得的结果,在非冗余球状蛋白集中分别检测四种主要肽酶类型(丝氨酸、天冬氨酸、半胱氨酸和金属肽酶)及其抑制剂时,准确性可提高几个百分点。更重要的是,我们的方法随后可以预测肽酶与相互作用抑制剂的配对,联合全局准确性达到99%,阳性案例(肽酶/抑制剂)的覆盖率接近100%,相关系数为0.91%。在这项任务中,决策树方法优于单一方法。

结论

决策树能够可靠地将蛋白质序列分类为属于某一特定类别的肽酶或抑制剂,并能提供肽酶/抑制剂可能相互作用对的综合列表。这些信息有助于设计检测相互作用的肽酶/抑制剂复合物的实验,并能加快可能相互作用候选物的选择,而无需分别搜索并手动组合所得结果。一个专门为注释肽酶及其抑制剂而开发的网络服务器(HIPPIE)可在http://gpcr.biocomp.unibo.it/cgi/predictors/hippie/pred_hippie.cgi获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba7d/1885855/36e5f5418828/1471-2105-8-S1-S3-1.jpg

相似文献

1
A computational approach for detecting peptidases and their specific inhibitors at the genome level.
BMC Bioinformatics. 2007 Mar 8;8 Suppl 1(Suppl 1):S3. doi: 10.1186/1471-2105-8-S1-S3.
2
MEROPS: the peptidase database.
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D160-4. doi: 10.1093/nar/gkh071.
3
Prediction of peptidase category based on functional domain composition.
J Proteome Res. 2008 Oct;7(10):4521-4. doi: 10.1021/pr800292w. Epub 2008 Sep 3.
4
MEROPS: the peptidase database.
Nucleic Acids Res. 2008 Jan;36(Database issue):D320-5. doi: 10.1093/nar/gkm954. Epub 2007 Nov 8.
5
MEROPS: the database of proteolytic enzymes, their substrates and inhibitors.
Nucleic Acids Res. 2014 Jan;42(Database issue):D503-9. doi: 10.1093/nar/gkt953. Epub 2013 Oct 23.
6
MEROPS: the database of proteolytic enzymes, their substrates and inhibitors.
Nucleic Acids Res. 2012 Jan;40(Database issue):D343-50. doi: 10.1093/nar/gkr987. Epub 2011 Nov 15.
7
MEROPS: the peptidase database.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D270-2. doi: 10.1093/nar/gkj089.
8
The MEROPS batch BLAST: a tool to detect peptidases and their non-peptidase homologues in a genome.
Biochimie. 2008 Feb;90(2):243-59. doi: 10.1016/j.biochi.2007.09.014. Epub 2007 Sep 29.
10
Using the MEROPS Database for Proteolytic Enzymes and Their Inhibitors and Substrates.
Curr Protoc Bioinformatics. 2014 Dec 12;48:1.25.1-1.25.33. doi: 10.1002/0471250953.bi0125s48.

引用本文的文献

1
Filling the gap between biology and computer science.
BioData Min. 2008 Jul 17;1(1):1. doi: 10.1186/1756-0381-1-1.

本文引用的文献

1
MEROPS: the peptidase database.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D270-2. doi: 10.1093/nar/gkj089.
2
Proteases universally recognize beta strands in their active sites.
Chem Rev. 2005 Mar;105(3):973-99. doi: 10.1021/cr040669e.
3
Ensembl 2005.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D447-53. doi: 10.1093/nar/gki138.
4
Evolutionary families of peptidase inhibitors.
Biochem J. 2004 Mar 15;378(Pt 3):705-16. doi: 10.1042/BJ20031825.
5
The Pfam protein families database.
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D138-41. doi: 10.1093/nar/gkh121.
6
Canonical protein inhibitors of serine proteases.
Cell Mol Life Sci. 2003 Nov;60(11):2427-44. doi: 10.1007/s00018-003-3120-x.
7
The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003.
Nucleic Acids Res. 2003 Jan 1;31(1):365-70. doi: 10.1093/nar/gkg095.
8
Serpin structure, mechanism, and function.
Chem Rev. 2002 Dec;102(12):4751-804. doi: 10.1021/cr010170+.
9
MEROPS: the protease database.
Nucleic Acids Res. 2002 Jan 1;30(1):343-6. doi: 10.1093/nar/30.1.343.
10
The PROSITE database, its status in 2002.
Nucleic Acids Res. 2002 Jan 1;30(1):235-8. doi: 10.1093/nar/30.1.235.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验