Suppr超能文献

一种使用相关系数矩阵的末端限制性片段长度多态性(T-RFLP)数据分析方法的开发与应用

Development and application of a T-RFLP data analysis method using correlation coefficient matrices.

作者信息

Nakano Yoshio, Takeshita Toru, Kamio Noriaki, Shiota Susumu, Shibata Yukie, Yasui Masaki, Yamashita Yoshihisa

机构信息

Department of Preventive Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.

出版信息

J Microbiol Methods. 2008 Dec;75(3):501-5. doi: 10.1016/j.mimet.2008.08.002. Epub 2008 Sep 24.

Abstract

Environmental microbiology studies commonly use terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes, for example, to analyze changes in community structure in relation to changing physicochemical and biological conditions over space and time. Although T-RFLP is most useful for comparing samples from different environments, a large number of samples makes effective analysis difficult using the Web-based tools that are currently available. To resolve this dilemma, we used a new approach for calculating data from multiple T-RFLP samples by estimating terminal fragment combinations, then applying a correlation analysis using two different fluorescent dyes generated simultaneously from all samples. This calculation was based on the expectation that the proportions of two terminal fragments from one full-length polymerase chain reaction fragment would be nearly the same in each analysis. Using this program, the oral microflora in 73 human saliva samples were analyzed, and 24 bacterial groups, with peak areas of at least 0.5% and correlation coefficients of 0.55 or greater, were identified from the T-RFs within 40 s.

摘要

环境微生物学研究通常使用16S rRNA基因的末端限制性片段长度多态性(T-RFLP),例如,来分析群落结构随空间和时间的物理化学及生物条件变化而发生的改变。虽然T-RFLP对于比较来自不同环境的样本最为有用,但大量样本使得使用当前可用的基于网络的工具进行有效分析变得困难。为了解决这一困境,我们采用了一种新方法,通过估计末端片段组合来计算来自多个T-RFLP样本的数据,然后对所有样本同时产生的两种不同荧光染料进行相关性分析。该计算基于这样的预期:在每次分析中,一个全长聚合酶链反应片段的两个末端片段的比例几乎相同。使用该程序,对73份人类唾液样本中的口腔微生物群进行了分析,并在40秒内从T-RFs中鉴定出24个细菌类群,其峰面积至少为0.5%,相关系数为0.55或更高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验